Project description:Endogenously determined inter-individual differences in growth rate of bivalve molluscs have been widely analyzed at different organizational levels. Most studies have focused on the characterization of the physiological differences between fast (F) and slow (S) growing individuals. Although several genes have been described to be up regulated on fast growing individuals, the molecular basis underlying the mechanisms at the origin of growth variation is still poorly understood. In the present study we reared mussel spat of the species Mytilus galloprovincialis under diets below the pseudofaeces threshold (BP) and above the pseudofaeces threshold (AP). After 3 months, F and S mussels on each condition were selected, so that 4 experimental groups were obtained: FBP, SBP, FAP and SAP. We hypothesized that nurturing conditions during their growing period would modify the molecular basis of growth rate differences. However, results of feeding experiments showed that F mussels displayed higher clearance and ingestion rates and higher efficiencies of food selection prior to ingestion, as well as higher gill surface areas, irrespective of the rearing nutritional environment. To decipher molecular mechanism at the origin of growth variation, gills of the 4 mussel groups were dissected, and used for transcriptome analysis with a custom Agilent single channel microarray. Gene expression analysis revealed i) a low number (12) of genes differentially expressed associated to maintenance condition differences and ii) 117 genes differentially expressed when comparing fast and slow growing mussels (FBP + FAP vs. SBP + SAP). We further investigated this comparison: GO terms and KEGG pathway association of the differentially expressed genes allowed us to analyze the functions involved on the differentially expressed encoding. Transcriptomic differences between F and S mussels were mainly based on the up-regulation of response to stimulus, growth and cell activity Biological Process GO terms. Regarding the KEGG terms, carbohydrate metabolism and Krebs cycle were found to be up-regulated in F mussels whereas biosynthetic processes were up-regulated in S mussels. Among the differentially expressed genes that are annotated, the following ones were found to be up regulated in F mussels: i) Mucin, related to mucus secretion, known to be crucial in food acquisition and pre-ingestive selection processes in bivalves, ii) genes related to growth such as Myostatin or Insulin-like growth factor, iii) genes involved in feeding activity, such as Fibrocystin or Dynein and iv) genes involved in the energetic metabolism; Citrate synthase. S mussels mainly over-expressed genes related to immune system and defence (Leucine-rich repeat-containing protein, Metalloendopeptidase, Small heat shock protein 24, Multidrug resistance,…).The present results suggest that differences in feeding activity and in the allocation of metabolic energy between growth groups could account for the differences in growth rate in spat of Mytilus galloprovincialis. In accordance with their higher feeding rates and growth, fast growing mussels were found to mainly over-express genes involved in the development and maintenance of such activities, however, slow growing mussels needed to expend energy in immune and defence processes to ensure survival at the expense of growth rate.
Project description:The freshwater pearl mussel Margaritifera margaritifera is one of the most threatened freshwater bivalves worldwide. In this study, we aimed (i) to study the processes by which water quality might affect freshwater mussels in situ and (ii) to provide insights into the ecotoxicological significance of water pollution to natural populations in order to provide necessary information to enhance conservation strategies. M. margaritifera specimens were sampled in two close sites located upstream or downstream from an illegal dumping site. The renal transcriptome of these animals was assembled and gene transcription determined by RNA-seq. Correlations between transcription levels of each single transcript and the bioaccumulation of 9 trace metals, age (estimated by sclerochronology) and condition index were determined in order to identify genes likely to respond to a specific factor. Amongst the studied metals, Cr, Zn, Cd and Ni were the main factors correlated with transcription levels, with effects on translation, apoptosis, immune response, response to stimulus and transport pathways. However, the main factor explaining changes in gene transcription appeared to be the age of individuals with a negative correlation with the transcription of retrotransposons-related genes. To investigate this effect further, mussels were classified into 3 age classes. In young, middle-aged and old animals, transcription levels were mainly explained by Cu, Zn and age, respectively. This suggests differences in the molecular responses of this species to metals during its lifetime that must be better assessed in future ecotoxicology studies.
Project description:Mussels are a group of sessile and filter-feeding invertebrates, and are key structural elements of many marine and freshwater ecosystems. The mussel haemolymph is the first defense line to pathogen infection and inflammation with an innate immune response. Despite the importance of this body fluid in determining the physiological condition of the animal, little is known about the molecular mechanisms underlying the cellular and humoral responses. Proteomic characterization of this body fluid has been hampered by the scarce Mytilus sp genomic data available. To systematic characterize the marine mussel Mytilus edulis hemolymph proteome, we have applied a mass spectrometry (nanoLC-MS/MS) strategy integrating genomics and transcriptomics data for proteins identification. After sample analysis and first identification based on MS/MS data comparison, proteins with unknown functions were annotated with blast using public database (nrNCBI) information. Overall 654 haemolymph proteins were identified with high confidence. The gene ontology analysis revealed that the majority of haemolymph proteins participate in primary cellular metabolic processes: energy production and metabolism of biomolecules. Nevertheless it also revealed a protein complement whose functions could be related to oxidative stress defense, xenobiotic detoxification, drug metabolism and immune response.