Project description:The study was conducted to characterize the mutant; identify the candidate gene for the mutant trait with the map-based cloning approach; investigate the segregation of target gene with the mutant characteristics, and examine the metabolic pathways of differentially expressed genes between WT and its mutant with comparative transcriptome analysis.
Project description:The huge size, the redundancy and the great repeated portion of the bread wheat genome [Triticum aestivum (L.)], placed it among the most difficult species to be sequenced and dissected at the genetic, structural and evolutionary levels. To overcome the limitations, a strategy based on the genome compartmentalization in individual chromosomes and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium. A total of 95,812 BAC clones of short (5AS) and long (5AL) arm-specific BAC libraries, were fingerprinted and assembled into contigs by complementary analytical approaches based on FingerPrinted Contigs and Linear Topological Contig. Combined anchoring approaches based on PCR marker screening, microarray and BlastN searches, applied to interlinked genomic tools, that is genetic maps, deletion bin map, high-density neighbor map, BAC end sequences, genome zipper and chromosome survey sequences, allowed the development of a high quality physical map, with an anchored physical coverage of 75% for 5AS and 53% for 5AL, with high portions (64 and 48%, respectively) ordered along the chromosome. The gene distribution along the wheat chromosome 5A compared with the closest related genomes showed a pattern of syntenic blocks belonging to different chromosomes of Brachypodium, rice and sorghum and regions involving translocations and inversions. The physical map presented here is currently the most comprehensive map for 5A chromosome and represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits, and a reference for the 5A sequencing projects.
Project description:To improve the resources for map-based cloning and sequencing of the wheat genome, we established a physical map of the wheat chromosome 1BL with a high density of markers by hybridizing the newly developed INRA GDEC Triticum aestivum NimbleGen 12x17k ISBP microarray (A-MEXP-2312) with BAC pools from the 1BL physical map. Then, we managed to map 3912 ISBP on the wheat chromosome 1BL BACs. The values in the 'Factor Value[individual]' column represent the BAC pool that have been hybridized on the array. For example, the assay 1 correspond to the hybridization of a bulk of all DNA BAC of the plate 1 of the MTP (Minimum Tilling path) BAC library of the chromosome 1BL.
Project description:Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map- based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Rice embryos are rich in high-quality protein, fat, vitamins and minerals, representing the most important nutritional part of brown rice. However, the molecular mechanism of rice embryo development is poorly understood. In this study, map-based cloning, metabolomics, and transcriptomics were applied to explore the giant embryo rice cultivar Dapeimi grown under natural conditions. The map-based cloning results demonstrated that Dapeimi is a novel allelic mutant of GE, and the functional mutation site is a single cytosine deletion in the exon1, which differed from the findings of previous reports. The identification and analysis of differential metabolites indicated that plants lacking the GE mainly promoted amino acid metabolism, energy metabolism, and lipid metabolism pathways in the rice embryo. Changes of gene expression in related metabolic regulatory networks were analyzed, and substantial changes in the transcriptome supported the metabolomics results. By analyzing rice embryo development through a combination of strategies, this research contributes to a greater understanding of the molecular mechanism of rice embryo development, and provides a theoretical foundation for improving rice nutrition and breeding high-nutrition varieties.
Project description:The study was conducted to characterize the mutant; identify the candidate gene for the mutant trait with the map-based cloning approach; investigate the segregation of target gene with the mutant characteristics, and examine the metabolic pathways of differentially expressed genes between WT and its mutant with comparative transcriptome analysis. We then performed gene expression profiling analysis using data obtained from RNA-seq of wild type and its mutant.
Project description:Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map- based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology.