Project description:Enrichments with labeled CH4 and NO2 were conducted to test microbial community correlations and constrain potential metabolic interactions between methanotrophs and other one-carbon utilizing microorganisms under low O2 conditions
Project description:Four stable and robust TCE-dechlorinating microbial communities were enriched from TCE-contaminated groundwater under four different conditions exploring two parameters, high and low methanogenic activity (Meth and NoMeth), with and without vitamin B12 supplement (MethB12 and NoMethB12, Meth and NoMeth, respectively). Identical amounts of lactate (2.7 mmol) and TCE (20 μl) were supplied as electron donor and electron acceptor. All four cultures were capable of reductively dechlorinating TCE to VC and ethene. Genomic DNA of the four enrichments was applied on a quad-Dhc-genome microarray in order to characterize the gene content of Dehalococcoides species present in the four enrichments
Project description:Four stable and robust TCE-dechlorinating microbial communities were enriched from TCE-contaminated groundwater under four different conditions exploring two parameters, high and low methanogenic activity (Meth and NoMeth), with and without vitamin B12 supplement (MethB12 and NoMethB12, Meth and NoMeth, respectively). Identical amounts of lactate (2.7 mmol) and TCE (20 M-NM-<l) were supplied as electron donor and electron acceptor. All four cultures were capable of reductively dechlorinating TCE to VC and ethene. Genomic DNA of the four enrichments was applied on a quad-Dhc-genome microarray in order to characterize the gene content of Dehalococcoides species present in the four enrichments The genomic DNA of four enrichment cultures completely dechlorinated TCE to VC and ethene was used on the microarray to query Dehalococcoides species present in the mixed cultures.
Project description:Dimitry Y. Sorokin et al., (2021, Russian Academy of Sciences, Russia and Delft University of Technology, The Netherlands) describe the isolation and physiological and genomic properties of a fifth functional group of sulfur-respiring haloarchaea enriched from hypersaline lake sediments with CO as the electron donor. Additional shotgun proteomic profiling of the described strains has been performed.
2022-12-25 | PXD028241 | Pride
Project description:Long-term incubations with sediments from a methanogenic lake - metagenomic sequencing
Project description:The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to increase atmospheric deposition of contaminants in these high elevation locations. Total mercury and 28 organochlorine compounds were measured in composite, whole fish samples collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in fish from all lakes sampled and ranged in concentration from 17 to 262 ug/kg wet weight. Only two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were detected in fish tissues (concentrations <25 ug/kg wet weight). No organochlorines were detected in sediments (MRL ≈1-5 ug/kg), while median total and methyl mercury in sediments were 30.4 and 0.34 ug/kg (dry weight), respectively. Using a targeted rainbow trout cDNA microarray with known genes, we detected significant differences in liver transcriptional responses, including metabolic, endocrine, and immune-related genes, in fish collected from a contaminated lake compared to a lake with a lower contaminant load. Overall, our results suggest that local urban areas are contributing to the observed contaminant patterns, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. Keywords: High altitude lakes, mercury, salmonids, organochlorines