Project description:This SuperSeries is composed of the following subset Series:; GSE5388: Adult postmortem brain tissue (dorsolateral prefrontal cortex) in subjects with bipolar disorder; GSE5389: Adult postmortem brain tissue (ortibtofrontal cortex) in subjects with bipolar disorder; Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Experiment Overall Design: Refer to individual Series
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing. Keywords: disease state analysis
Project description:Down syndrome (DS) is the result of trisomy chromosome 21 but the mechanisms by which the genotype leads to the characteristic disease phenotype are unclear. We performed a microarray study using human adult brain tissue (dorsolateral prefrontal cortex) from DS subjects and healthy controls to characterise for the first time the human adult Down syndrome brain Experiment Overall Design: RNA extracted from human postmortem brain tissue from adult subjects with Down syndrome and healthy controls was hybridised to Affymetrix HG-U133A GeneChips to identify differentially expressed genes in the disease state.
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. This SuperSeries is composed of the SubSeries listed below.
Project description:Anorexia nervosa (AN), bulimia nervosa (BN), and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN, and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. Additionally, few if any studies have interrogated postmortem brain tissue for evidence of eQTLs associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN, and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a non-psychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, e.g., eating disorders (ED; N=15), and obsessive-compulsive disorder/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and non-psychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared to controls and OCD cases compared to controls, respectively (FDR < 5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain datasets. Gene expression data from the dorsolateral prefrontal cortex (DLPFC) from postmortem tissue on 133 subjects - 15 eating disorder (ED) patients, 16 obessive compulsive disorder (OCD) patients, and 102 non-psychiatric controls - run on the Illumina HumanHT-12 v3 microarray
Project description:Down syndrome (DS) is the result of trisomy chromosome 21 but the mechanisms by which the genotype leads to the characteristic disease phenotype are unclear. We performed a microarray study using human adult brain tissue (dorsolateral prefrontal cortex) from DS subjects and healthy controls to characterise for the first time the human adult Down syndrome brain Keywords: disease state analysis
Project description:The dorsolateral prefrontal cortex (DLPFC) is the association area in the anterior part of the frontal lobe and has a crucial role in cognitive functioning and negative symptoms in SZschizophrenia. However, limited information of altered protein networks is available in this region in schizophrenia. We performed a proteomic analysis using single-shot liquid chromatography-tandem mass spectrometry of grey matter of postmortem DLPFC in chronic schizophrenia subjects (n=20) and healthy individuals (n=20) followed by bioinformatic analysis to identify altered protein networks in SZ.