Project description:Epigenetic regulators present novel opportunities for both ischemic stroke research and therapeutic interventions. While previous work has implicated that they may provide neuroprotection by potentially influencing coordinated sets of genes and pathways, most of them remains largely uncharacterized in ischemic conditions. In this study, we used the oxygen-glucose deprivation (OGD) model in the immortalized mouse hippocampal neuronal cell line HT-22 and carried out an RNAi screen on epigenetic regulators. We identified Prmt5 as a novel negative regulator of neuronal cell survival after OGD, which presented a phenotype of translocation from the cytosol to the nucleus upon oxygen and energy depletion both in vitro and in vivo. Prmt5 bound to the chromatin and a large number of promoter regions to repress downstream gene expression. Silencing Prmt5 significantly dampened the OGD-induced changes for a large-scale of genes, and gene ontology analysis showed that Prmt5-target genes were highly enriched for Hedgehog signaling. Encouraged by the above observation, we treated mice with middle cerebral artery occlusion (MCAO) with the Prmt5 inhibitor EPZ015666 and found that Prmt5 inhibition sustain protection against neuronal death in vivo. Together, our findings revealed a novel epigenetic mechanism of Prmt5 in cerebral ischemia and uncovered a potential target for neuroprotection.
Project description:Epigenetic regulators present novel opportunities for both ischemic stroke research and therapeutic interventions. While previous work has implicated that they may provide neuroprotection by potentially influencing coordinated sets of genes and pathways, most of them remains largely uncharacterized in ischemic conditions. In this study, we used the oxygen-glucose deprivation (OGD) model in the immortalized mouse hippocampal neuronal cell line HT-22 and carried out an RNAi screen on epigenetic regulators. We identified Prmt5 as a novel negative regulator of neuronal cell survival after OGD, which presented a phenotype of translocation from the cytosol to the nucleus upon oxygen and energy depletion both in vitro and in vivo. Prmt5 bound to the chromatin and a large number of promoter regions to repress downstream gene expression. Silencing Prmt5 significantly dampened the OGD-induced changes for a large-scale of genes, and gene ontology analysis showed that Prmt5-target genes were highly enriched for Hedgehog signaling. Encouraged by the above observation, we treated mice with middle cerebral artery occlusion (MCAO) with the Prmt5 inhibitor EPZ015666 and found that Prmt5 inhibition sustain protection against neuronal death in vivo. Together, our findings revealed a novel epigenetic mechanism of Prmt5 in cerebral ischemia and uncovered a potential target for neuroprotection.
Project description:Cerebral ischemia, commonly resulting from an ischemic stroke, can lead to significant cognitive impairments due to neuronal damage and neuroinflammation. The cannabinoid CB1 receptor, part of the endocannabinoid system, plays a crucial role in modulating synaptic plasticity, neurogenesis, and neuroprotection. Research suggests that targeting the CB1 receptor could offer a promising therapeutic strategy to mitigate cognitive deficits following cerebral ischemia. Modulating CB1 receptor activity, either through agonists or antagonists, has been shown to influence key pathways involved in neuroprotection and inflammation, potentially enhancing recovery of cognitive functions. Understanding the mechanisms by which CB1 receptor modulation affects brain recovery post-ischemia could pave the way for novel treatments aimed at reducing the long-term cognitive impact of ischemic strokes.
Project description:profiling gene transcription in a mouse model of permanent focal cerebral ischemia that was induced by middle cerebral artery occlusion (MCAO)
Project description:Background and Purpose: Long noncoding RNAs (lncRNAs) are an emerging class of genomic regulatory molecules reported in neurodevelopment and many diseases. Despite extensive studies have identified lncRNAs and discovered their functions in CNS diseases, the function of lncRNAs in ischemia stroke remains poorly understood. Method: Ischemia was induced by transient middle cerebral artery occlusion. Expression profiles of lncRNAs, miRNAs and mRNAs after ischemia stroke were obtained using high throughput sequencing technology. A correlation network was constructed to predict lncRNA functions. LncRNA-miRNA-mRNA network was constructed to discover ceRNAs. Results: 1924 novel lncRNAs were identified, indicating that the ischemia stroke has a complex effect on lncRNAs. The top 10 regulated lncRNAs was validated by qRT-PCR. We have also predicted function of lncRNAs, and subjected them to gene co-expression network analysis, revealing the involvement of lncRNAs in many important biological process including injury and repair that are implicated in the regulation of ischemia stroke. Furthermore, lncRNAs mediated SMD (Staufen1-mediated mRNA decay) was analyzed and ceRNA (competitive endogenous RNAs) network was constructed in ischemia stroke. Conclusions: This study reports the genome-wide lncRNA profiles in ischemia stroke using high throughput sequencing and constructs a systematic lncRNA-miRNA-mRNA network which reveals a complex functional noncoding RNA regulatory network in ischemia stroke.
Project description:We obtained the profiles of neuronal phosphoproteome after cerebral ischemia and reperfusion by isolating mice hippocampus. Hippocampus combined from either nine sham or nine focal cerebral ischemia 1.5 h and reperfusion 24 h (IR) mice were lysed, digested, labeled with different TMT tags, then pooled and analyzed by LC/LC-MS/MS. In total, we quantified 7,865 phosphopeptides,179 phosphorylation sites of 129 proteins were upregulated and 843 phosphorylation sites of 494 proteins were downregulated in hippocampus during cerebral ischemia 2 h compare with sham operation.
Project description:To reveal the effects of Buyang Huanwu Decoction on circRNA-miRNA-mRNA transcriptional network of rats with cerebral ischemia, explore its molecular mechanism for the treatment of cerebral ischemia.