Project description:This SuperSeries is composed of the following subset Series: GSE11944: Mucosal Glycan Foraging Enhances the Fitness and Transmission of a Saccharolytic Human Distal Gut Symbiont GSE11953: Mucosal Glycan Foraging Enhances the Fitness and Transmission of a Saccharolytic Human Distal Gut Symbiont: ECF mutant GSE11962: Growth of B. thetaiotaomicron on purified host mucosal glycans and glycan fragments Refer to individual Series
Project description:Host-derived factors are sucked into midgut of mosquitoes during natural malaria transmission, but their influence on malaria transmission is largely unknown. We reported that mouse complement C3 taken into mosquitoes significantly promoted malaria transmission either in laboratory or in field. This effect was attributed to the reduction of microbiota abundance in mosquito midgut by host-derived C3 through direct lyses the predominant symbiont bacteria Elizabethkingia anopheles. Elizabethkingia anopheles symbiont bacteria were demonstrated to be detrimental to malaria sexual stages in mosquitoes. Strikingly, the promoted effect of host C3 on malaria transmission was confirmed by laboratory mosquitoes membrane-feeding on Plasmodium falciparum. Therefore, we reveal a novel strategy of malaria parasite to utilize host complement C3 to promote its transmission, and the administration of C3 inhibitor would provide us a novel strategy to control malaria transmission.
2024-08-01 | GSE271070 | GEO
Project description:Host secretion protein essential for vertical symbiont transmission
Project description:Begomoviruses, the largest, most damaging and emerging group of plant viruses in the world, infect hundreds of plant species and new virus species of the group are discovered each year. They are transmitted by species of the whitefly Bemisia tabaci. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops as well as in many more agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; the causes for these differences are attributed among others to genetic diversity of vector populations, as well as to differences in the bacterial symbiont flora of the insects. Here, we performed discovery proteomic analyses in nine whiteflies populations from both B (MEAM1) and Q (MED) species with different TYLCV transmission abilities. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. Efficient vector populations from two different B. tabaci species over-expressed or downregulated expression of proteins belonging to two different molecular pathways.
Project description:Seaweeds may represent immunostimulants that could be used as health-promoting fish feed components thereby offering an alternative for the use of antibiotics. This study was performed to gain insights into the immunomodulatory effects of dietary seaweeds in Atlantic salmon. Specifically tested were 10% inclusion levels of Laminaria digitata (SW1) and a commercial blend of seaweeds (Oceanfeed®) (SW2) against a fishmeal based control diet (FMC). Differences between groups were assessed in growth, feed conversion ratio (FCR) and blood parameters hematocrit (Hct) and hemoglobin (Hb). After a LPS challenge of fish representing each of the three groups, RNAseq was performed on head kidneys to determine transcriptomic differences in response to the immune activation, to our knowledge for the first time in fish in this context. Atlantic salmon fed with dietary seaweeds showed slightly higher FCRs and more homogenous growth but in general no major differences in performance in comparison with fishmeal fed fish. RNAseq resulted in ~154 million reads which were mapped against a NCBI Salmo salar reference and against a de novo assembled Salmo salar reference for analyses of expression of immune genes and ontology of immune processes among the 87,600 cDNA contigs. The dietary seaweeds provoked a more efficient immune response which involved more efficient identification of the infection site, and processing and presentation of antigens. More specifically, chemotaxis and the chemokine-mediated signaling pathway with involvement of genes such as C-C motif chemokine 19 were improved and the defense response to Gram-positive bacterium reduced. The predicted integrin alpha-2-like gene had by far the highest up-regulated expression and may therefore represent a key marker gene of the LPS immune response in salmonids. Specific Laminaria digita effects included reduction of the cytokine-mediated signalling pathway as indicated by the cytokine macrophage migration inhibitory factor, and interferon-gamma-mediated signalling as indicated by STAT1 and the gamma-interferon-inducible lysosomal thiol reductase precursor. Highly upregulated and specific for this diet was the expression of Major histocompatibility complex class I-related gene protein. The commercial blend of seaweeds caused more differential expression than Laminaria digita and improved immune processes such as receptor-mediated endocytosis, inflammatory response, cell adhesion and response to lipopolysaccharide. Particularly expression of many important immune receptors was up-regulated illustrating increased responsiveness. NF-kappa-B inhibitor alpha is an important gene that marked the difference between both seaweed diets as Laminaria digita inhibits the production of this cytokine while the blend of seaweeds stimulates it. It can be concluded that replacing fishmeal partly with seaweeds such as Laminaria digita can have important modulatory effects on the immune capacity of Atlantic salmon resulting in a more efficient immune response.
Project description:Seaweeds in the upper intertidal zone experience extreme desiccation during low tide, followed by rapid rehydration during high tide. Porphyra sensu lato are typical upper intertidal seaweeds. Thus, it is valuable to investigate the adaptive conditions and mechanisms of seaweed to desiccation-rehydration stress.