Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification
Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification
Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification Experiment aimed at identifying B52 potential mRNA targets in the Drosophila developing eye Control: GMR X GFP-NLS trangenic larvae The 2 IP- GFP cy3 vs B52 cy5 rep.1 and IP- GFP cy5 vs B52 cy3 rep.1 samples correspond to dye-swap experiments. Two replicates (rep1 and rep2) are included.
Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification Experiment aimed at determining whether increased SR protein B52 expression can affect global gene expression in Drosophila. Control: GMR X GFP-NLS trangenic larvae The 2 samples correspond to dye-swap experiments.
Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification Experiment aimed at identifying dASF/SF2 potential mRNA targets in the Drosophila developing eye Control: GMR X GFP-NLS trangenic larvae The 2 IP- GFP cy3 vs ASF cy5 rep.1 and IP- GFP cy5 vs ASF cy3 rep.1 samples correspond to dye-swap experiments. Two replicates (rep1 and rep2) are included.
Project description:Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout growth of a whole organism. Targeting expression of five SR proteins in the developing eye of Drosophila allowed us to show that these splicing factors induce various phenotypic alterations concerning eye organogenesis and viability. Although both dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impairs normal photoreceptor axons projection and neurogenesis in visual ganglia. Consistently, microarray analyses revealed that many of the B52 targets are involved in brain organogenesis and we show that their splicing profile is altered both in B52 loss and gain of function. Conversely, a large proportion of dASF/SF2 targets are involved in eye development. This differential effect argues that SR proteins confer accuracy to developmental gene-expression programs, thus ensuring tissue identity and supporting cell-lineage decisions. Keywords: genetic modification Experiment aimed at determining whether increased SR protein dASF/SF2 expression can affect global gene expression in Drosophila. Control: GMR X GFP-NLS trangenic larvae The 2 samples correspond to dye-swap experiments.