Project description:The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signalling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.
Project description:This SuperSeries is composed of the following subset Series: GSE23999: Mapping the binding regions of the cubitus interruptus (Ci) activator form GSE24024: Mapping the binding regions of the cubitus interruptus (Ci) repressor form GSE24028: Identification of genetic targets of Hh signaling in Drosophila Refer to individual Series
Project description:The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signalling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. ChIP-seq against Dachshund vs input ChIP-seq. Eye-antennal imaginal discs are dissected from Grh-GFP (Bloomington stock 42269) 3rd instar larvae and fixed with formaldehyde. Chromatin is prepared and sonicated until fragments reach an average size of 500 bp. Chromatin is immunoprecipitated with an anti-GFP Ab (ab290, Abcam) and the immunocomplexes are recovered with protein A/G magnetic beads (Millipore).
Project description:Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets we identified include several Hh pathway components, most previously identified targets, and many targets that are novel. Analysis of expression patterns of pathway components and target genes gave evidence of autocrine Hh signaling in the optic primordium of the embryo. And, every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner. We present evidence that Hh-dependent tissue specificity is dependent upon transcription factors that are Hh-independent, suggesting that “pre-patterns” of transcription factors partner with Ci to make Hh-dependent gene expression position-specific.
Project description:Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets we identified include several Hh pathway components, most previously identified targets, and many targets that are novel. Analysis of expression patterns of pathway components and target genes gave evidence of autocrine Hh signaling in the optic primordium of the embryo. And, every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner. We present evidence that Hh-dependent tissue specificity is dependent upon transcription factors that are Hh-independent, suggesting that “pre-patterns” of transcription factors partner with Ci to make Hh-dependent gene expression position-specific. Analysis of the expression profiles of loss of function mutantations in core components of the Hh signaling pathway. A total of 14 samples were analysed consisting of comparisons of hh-, ci-, smo-, ptc-, and Cim1-m4 (Activator) mis-expression embryos compared to wt sibling embryos.
Project description:The imaginal discs of Drosophila melanogaster, where most known Hedgehog (Hh) signaling target genes are expressed with a restricted pattern, offers an accessible model system for identifying novel targets of the Hh signaling pathway. In the wing discs, cells near the A/P compartment boundary (B: ptc+) receive the highest level of Hh stimulation, A cells (A: hh-) further from the border receive lower levels of stimulation, while P cells (P: hh+) do not respond to Hh. To identify target genes whose expression is controlled by Hh signaling activity, we performed a systematic comparison of gene expression profiles among the A cells (A: hh-), the A cells adjacent to the A/P compartment boundary (B: ptc+), and P cells (P: hh+) via microarray analysis.