Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Acinetobacter baumannii A1S_1874 gene encodes as a LysR-type transcriptional regulator. LysR family regulators known to regulate biofilm formation, antibiotic resistance, and the expression of diverse genes in other Gram-negative bacteria. However, A1S-1874 has never been characterized in Acinetobacter baumannii, and the studies about the regulon of A1S-1874 are not discovered. In this study we revealed that A1S_1874 differentially regulates at least 302 genes including the csu pilus operon, N-acylhomoserine lactone synthese gene, A1S_0112-A1S_0118 operon, type 1v secretion system related genes that are involved in biofilm formation, surface motility, adherence, quorum sensing and virulence. Overall, our data suggests that A1S-1874 is a key regulator of Acinetobacter baumannii biofilm formation and gene expression.
Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.
Project description:The goal of this RNA-Seq study was to determine Acinetobacter baumannii's transcriptiional response to sub-MIC concentrations of benzalkonium chloride in Acinetobacter baumannii. This RNA-seq data was then utilized to aide in the determination of the sub-MIC mechanism of action for benzalkonium chloride.