Project description:Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive plant growth-promoting rhizobacteria. In this work we aim to study the effect of the effect of sigD deletion on the transcriptome of FZB42. The transcritomes were compared by two-color microarray of the sigD- mutant and the wildtype of B. amyloliquefaciens FZB42 grown in 1C medium supplemented with soil extract (SE). This submission includes data from two independent experiments with three biological replicates. Here a biological replicate means the bacterial culture from one flask used for RNA preparation. The samples were collected by two performers. The experiments were varied in sample performer, the date of the experiment.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates.
Project description:Lysine acetylation is a major post-translational modification that plays an important regulatory role in almost every aspects in both eukaryotes and prokaryotes. Bacillus amyloliquefaciens, a Gram-positive bacterium, is very effective for the control of plant pathogens. Here, we conducted the first lysine acetylome in B. amyloliquefaciens through a combination of highly sensitive immune-affinity purification and high-resolution LC−MS/MS. Overall, we identified 3268 lysine acetylation sites in 1254 proteins. Acetylated proteins are associated with a variety of biological processes and a large fraction of these proteins are involved in metabolism. These data serves as an important resource for further elucidation of the physiological role of lysine acetylation in B. amyloliquefaciens.
Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants.
Project description:The transcriptomic response of Bacillus amyloliquefaciens FZB42 to maize root exudates at OD600=3.0. This is a comprehensive analysis using the data of six microarray experiments (Exp1-2-3 and ExpABC respectively, 18 hybridization in total).
Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants. Examination of transcriptome profile of rhizobacterium B. amyloliquefaciens FZB42 grown under six conditions.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates. 4 treatments, including 2 blank control (24 h and 48 h-post inoculation, named as 5 and 15, respectively), and 2 treatments with maize root exudates (24 h and 48 h-post inoculation, named as 7 and 17, respectively)