Project description:The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina platensis biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of K and Mg minerals in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Spirulina platensis biomass can stimulate rice seed production.
2024-09-16 | PXD051225 | Pride
Project description:effects of different pyrolysis temperature biochar on soil properties and plant
Project description:Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least four orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5X more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, surface area, pH) drove cell attachment differences. Reverse transcription qPCR indicated BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, revealing biofilm formation potential and cell-cell communication pathway connections. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/ attributes to improve LC-PCBs biodegradation.
Project description:Along with lipidomic and metabolomic analyses, we analysed the effect of short-term heat stress on Nicotiana tabacum pollen tubes. Tubes were either grown for 3 hours at room temperature, for 6 hours at room temperature or for 3 hours at room temperature and then 37 °C for another 3 hours.
Project description:<p>Heat stress is an important issue in dairy cattle feeding management affecting summer health and economic efficiency. In recent years, global climate change has led to an increase in atmospheric CO2 content and average daily temperature, making heat stress a major challenge in dairy farming. This experiment combined 16S rDNA sequencing, metagenomic sequencing and metabolomic analysis. In this experiment, 10 cows each of growing heifers, heifers and lactating cows were selected for sample collection in April and August. Ruminal fluid was collected and filtered through gauze, which was immediately transferred to liquid nitrogen prior to macrogenomic, 16S rDNA sequencing and metabolomic analyses.</p>
2022-08-11 | MTBLS5132 | MetaboLights
Project description:Role of biochar pyrolysis temperature in the redox-active environment: consequences on arsenic and lead geochemistry and bacterial community