Project description:The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina platensis biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of K and Mg minerals in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Spirulina platensis biomass can stimulate rice seed production.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
2020-03-30 | GSE133800 | GEO
Project description:Effects of biochar pyrolysis temperature on uranium immobilization in soil remediation: revealed by 16s rDNA and metabolomic analyses
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.
Project description:Changes in soil properties (e.g. pH, organic matter content, granulometry) can influence chemical toxicity to organisms and act alone as stressors. Previous studies on Enchytraeus albidus showed that changes in soil properties caused effects on reproduction and avoidance behavior and also oxidative stress. In addition, results at the transcritptomic level indicated changes in gene expression profile due to soil properties changes. In this study, E. albidus was exposed to modified versions of the artificial standard OECD soil (different pH, OM and clay content) in different exposure times (2, 4 and 8 days). The gene expression profile was characterized using a class comparison statistical analysis. Results indicated that the transcriptional response was time dependent, with different genes being affected at different time points. Results also showed some genes (and biological functions) being affected in a soil specific way.
Project description:In this study, examinations were performed on how the ECM fungus Paxillus involutus degrade complex, plant and litter material by using elemental analyses, FTIR spectroscopy, pyrolysis-GC/MS, and synchronous fluorescence spectroscopy together with microarray analyses screening 12,214 gene models, derived from 454 sequenced cDNA libraries. Rineau, F., Roth, D., Shah, F., Smits, M., Johansson, T., Canbäck, B., Bjarke Olsen, P., Persson, P., Nedergaard Grell, M., Lange, L., & Tunlid, A. (201X) Expression levels tune enzymatic exploitation of plant litter material by ectomycorrhizal fungi (manuscript in preparation). A 18-subarray study (data from 18 subarrays collected from two 12-plex microarrays (IDs 468335 and 468400) using total RNA recovered from three separate wild-type glass-bead cultures after amendments of various soil-derived substrates.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Phosphorus (P) limitation will play a key role in the productivity of agriculture in the coming decades. Struvite is an ammonium magnesium phosphate mineral that can be recovered from wastewater-treatment plants and can be considered as an alternative source of P. However, the impact of struvite on the plant yield and, particularly, on the soil microbial community is barely known. Here, we tested the impacts of struvite, sewage sludge, and their combination on the barley yield, soil macro and micronutrients, and biochemical and microbiological soil properties. Amendment with struvite alone and its combination with sludge increased the availability of P in soil, the plant uptake of P and Mg, and the barley yield. The analysis of phospholipid fatty acids (PLFAs) and metaproteomics approaches revealed significant effects of struvite on the biomass of Gram-positive bacteria and, particularly, on actinobacterial populations in soil.
2019-03-13 | PXD009595 | Pride
Project description:A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality, and plant properties
Project description:Changes in soil properties (e.g. pH, organic matter content, granulometry) can influence chemical toxicity to organisms and act alone as stressors. Previous studies on Enchytraeus albidus showed that changes in soil properties caused effects on reproduction and avoidance behavior and also oxidative stress. In addition, results at the transcritptomic level indicated changes in gene expression profile due to soil properties changes. In this study, E. albidus was exposed to modified versions of the artificial standard OECD soil (different pH, OM and clay content) in different exposure times (2, 4 and 8 days). The gene expression profile was characterized using a class comparison statistical analysis. Results indicated that the transcriptional response was time dependent, with different genes being affected at different time points. Results also showed some genes (and biological functions) being affected in a soil specific way. Fluorescently labelled cDNA, from enchytraeids exposed during 2, 4 and 8 days OECD standard soil (Cy3) and to the different exposure conditions (modified OECD soil) (Cy5), was synthesized for microarray analysis and hybridizations were performed. After scanning (Agilent Microarray Scanner from Agilent Technologies), spots were identified and ratios quantified using Quantarray (Packard Biochip Technologies). Statistical analysis of the microarrays was performed using BRB Array Tools version 3.8.1 Stable Release (http://linus.nci.nih.gov/BRB-ArrayTools.html). After background subtraction, the replicated spots within each array were averaged, and microarrays were normalized using loess method (Smith and Speed, 2003). Statistical class comparison between groups of arrays was performed between each exposure condition and the respective “control” (exposure in OECD standard soil, for each time of exposure) using two-sample T-test and 95% of confidence level for the assessment of differentially expressed genes.