Project description:This SuperSeries is composed of the following subset Series: GSE3101: Chitin oligosaccharide induction GSE3102: Crab shell attachment GSE3103: Chitin sensor Abstract: Chitin, an insoluble polymer of GlcNAc, is an abundant source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression profiling and mutational studies of Vibrio cholerae growing on a natural chitin surface, or with the soluble chitin oligosaccharides (GlcNAc)(2-6), GlcNAc, or the glucosamine dimer (GlcN)2 identified three sets of differentially regulated genes. We show that (i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)(2-6) gene set, including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PilA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a significant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of genes involved with chitin chemotaxis and adherence and with the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface chemistry. Collectively, these results provide a global portrait of a complex, multistage V. cholerae program for the efficient utilization of chitin. Refer to individual Series
Project description:Abstract: Chitin, an insoluble polymer of GlcNAc, is an abundant source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression profiling and mutational studies of Vibrio cholerae growing on a natural chitin surface, or with the soluble chitin oligosaccharides (GlcNAc)(2-6), GlcNAc, or the glucosamine dimer (GlcN)2 identified three sets of differentially regulated genes. We show that (i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)(2-6) gene set, including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PilA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a significant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of genes involved with chitin chemotaxis and adherence and with the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface chemistry. Collectively, these results provide a global portrait of a complex, multistage V. cholerae program for the efficient utilization of chitin. This SuperSeries is composed of the SubSeries listed below.
Project description:Transcriptional regulators are a broad class of proteins that alter gene expression in response to environmental stimuli. Transmembrane transcriptional regulators (TTRs) are a subset of transcriptional regulators in bacteria that can directly regulate gene expression while remaining anchored in the membrane. Whether this constraint impacts the ability of TTRs to bind their DNA targets remains unclear. Vibrio cholerae uses two TTRs, ChiS and TfoS, to activate horizontal gene transfer by natural transformation in response to chitin by inducing the tfoR promoter (PtfoR). While TfoS was previously shown to bind and regulate PtfoR directly, the role of ChiS in PtfoR activation remains unclear. Here, we show that ChiS directly binds PtfoR upstream of TfoS, and that ChiS directly interacts with TfoS. By independently disrupting ChiS-PtfoR and ChiS-TfoS interactions, we show that ChiS-PtfoR interactions play the dominant role in PtfoR activation. Correspondingly, we show that in the absence of ChiS, recruitment of the PtfoR locus to the membrane is sufficient for PtfoR activation when TfoS is expressed at native levels. Finally, we show that the overexpression of TfoS can bypass the need for ChiS for PtfoR activation. All together, these data suggest a model whereby ChiS both (1) recruits the PtfoR DNA locus to the membrane for TfoS and (2) directly interacts with TfoS to increase its local concentration near the membrane-proximal promoter. This work furthers our understanding of the molecular mechanisms that drive chitin-induced responses in V. cholerae and more broadly highlights how the membrane-embedded localization of TTRs can impact their activity.
Project description:Strain N16961 grown in M9 + 0.5 % lactate to OD 0.2. Culture was split and one part added 0.6 mM of indicated chitin oligosaccharide. Samples was isolated after 30 and 60 min. cDNA was prepared from 2 ug RNA and labeled with Cy3 (no induction) and Cy5 (induction with chitin oligosaccharide). Samples from at least two independent experiments and a total of four hybridizations for each chitin oligosaccharide and time.
Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
Project description:Members of the Vibrionaceae family are often found associated with chitin-containing organisms and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affected the transcriptome and metabolome of two bioactive Vibrionaceae strains, Vibrio corallilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused up-regulation of genes related to chitin metabolism and of genes potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being thirty-four folds upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced in higher amounts on chitin. Interestingly, in cultures of P. galatheae grown on chitin we detected high amounts of the biogenic amine phenylethylamine. Overall, these results suggest that both V. coralliilyticus and P. galatheae have a specific lifestyle for growth on chitin, and that the secondary metabolites they produce are likely to play a crucial role during chitin colonization.
Project description:Members of the Vibrionaceae family are often found associated with chitin-containing organisms and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affected the transcriptome and metabolome of two bioactive Vibrionaceae strains, Vibrio corallilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused up-regulation of genes related to chitin metabolism and of genes potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being thirty-four folds upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced in higher amounts on chitin. Interestingly, in cultures of P. galatheae grown on chitin we detected high amounts of the biogenic amine phenylethylamine. Overall, these results suggest that both V. coralliilyticus and P. galatheae have a specific lifestyle for growth on chitin, and that the secondary metabolites they produce are likely to play a crucial role during chitin colonization.
Project description:This study is an analysis of changes in gene expression during stringent response in Vibrio cholerae. V. cholerae cells in mid-log were treated with serine hydroxamate and gene expression was compared to untreated cells. Keywords: Stress response, stringent response