Project description:Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes. Keywords: other
Project description:This SuperSeries is composed of the following subset Series: GSE3286: Drosophila Life Cycle GSE3287: Unfertilized eggs GSE3288: Eyes absent mutant adults Abstract: Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes. Refer to individual Series
Project description:Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.
Project description:Given the continued advances in mass spectrometry technology and methods for database searching since the previous characterization of the Drosophila melanogaster sperm proteome, a new proteomic analysis of sperm samples was conducted to expand the size and coverage of the sperm proteome. This dataset is part of a larger project examining the molecular life history of Drosophila sperm.
Project description:Despite the importance of egg development to the female life cycle in Drosophila, global patterns of gene expression have not been examined in detail primarily due to the difficulty of synchronizing developmental stages. Entry into vitellogenesis is however an key stage of oogenesis, and by delaying entry past this control point, we have been able to investigate some of the transcriptional dynamics apparent before and after early egg formation over a 72 hour period.