Project description:To determine the optimal RNA-Seq approach for animal host-bacterial symbiont analysis, we compared transcriptome bias, depth and coverage achieved by two different mRNA capture and sequencing strategies applied to the marine demosponge Amphimedon queenslandica holobiont, for which genomes of the animal host and three most abundant bacterial symbionts are available.
Project description:We wanted to infer the contribution of host vs symbiotic microbiota plasticities on thermal acclimation of the holobiont. We long-term acclimated anymals of the same clonal line to 3 different temperatures (15, 20 and 25°C) and monitored along time the changes in fitness, microbiota composition, and host transcriptome.
Project description:Endozoicomonas are prevalent, abundant bacterial associates of marine animal hosts, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify putative interactions within the coral holobiont, we characterized a novel Endozoicomonas isolate and assessed its transcriptomic and proteomic responses to tissue extracts of its native host, the Red Sea coral Acropora humilis, at control and elevated temperatures. We show that host cues stimulated differential expression of genes assumed to be involved in the modulation of the host immune response by Endozoicomonas, such as flagellar assembly genes, ankyrins, ephrins, and serpins. Proteome analysis revealed the upregulation of vitamin B1 and B6 biosynthetic as well as glycolytic processes by Endozoicomonas in response to host cues. We further demonstrate that the inoculation of A. humilis with its native Endozoicomonas strain resulted in enhanced holobiont health metrics, such as host tissue protein content and algal symbiont photosynthetic efficiency. Behavioral, physiological, and metabolic changes in Endozoicomonas may be key to the onset and function of mutualistic interactions within the coral holobiont, and our results suggest that the priming of Endozoicomonas to a symbiotic lifestyle may involve modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas presumably plays an important role in holobiont nutrient cycling and may therefore be implicated in its health, acclimatization, and ecological adaptation.
Project description:Microbial symbiotic partners, such as those associated with reef-building corals, mediate biochemical transformations that influence host performance and survival. While evidence suggests microbial community composition partly accounts for differences in coral physiology, how these symbionts affect metabolic pathways remains underexplored. We aimed to assess functional variation between coral-associated microbial partners in hospite. To this end, we characterized and compared microbial community composition and metabolomic profiles from 9 coral species. These data support and expand on previous research by demonstrating microbial communities and metabolite profiles are species-specific and are correlated to one another. Using Porites spp. as a case study, we present evidence that the relative abundance of different sub-clades of Symbiodinium and bacterial/archaeal families influence the composition of functionally important metabolites. Our data suggests that while some microbial partners benefit the union, others are more opportunistic and possibly parasitize the host. Consequently, coral partner choice likely influences cellular metabolic activities and, therefore, holobiont nutrition.
Project description:Florida’s coral reefs are currently experiencing a multi-year disease-related mortality event, that has resulted in massive die-offs in multiple coral species. Approximately 21 species of coral, including both Endangered Species Act-listed and the primary reef-building species, have displayed tissue loss lesions which often result in whole colony mortality [Stony Coral Tissue Loss Disease (SCTLD)]. Determining the causative agent(s) of coral disease relies on a multidisciplinary approach since the causation may be a combination of abiotic, microbial or viral agents. Metaproteomics was used to survey changes in the molecular landscape in the coral holobiont with the goal of providing useful information not only in diagnosis, but for prediction and prognosis. Specifically, in the case of SCTLD, defining molecular changes in the coral holobiont will help define disease progression and aid in identifying the causative agent by clearly defining traits of disease progression shared across affected species. Using samples from nine coral species (46 samples total; those appearing healthy, n = 23, and diseased, n = 23), analysis of the coral and its associated microbiome were performed using bottom-up proteomics. Ongoing analysis (including improving coral holobiont genome-based search space) will demonstrate the utility of this approach and help define improved future experiments.
2021-05-21 | PXD026192 | Pride
Project description:Genomic Data on Guam reveal habitat partitioning of Massive Porites on Guam
Project description:This projiect aims to identify the proteome of the symbiotic gill, including the host and symbiotic bacteria proteins, and to reveal the metabolic interdependence among the tripartite holobiont which is based on mussel, methane-oxidizing endosymbiont and sulfur-oxidizing episymbiont.
2022-10-12 | PXD030676 | Pride
Project description:The genomic characterization of massive Porites in two different environments on Guam, Micronesia
Project description:Control of gene expression depends on genetics and environmental factors. The T-cell intracellular antigens T-cell intracellular antigen 1 (TIA1), TIA1-like/related protein (TIAL1/TIAR) and human antigen R (HuR/ELAVL1) are RNA-binding proteins that play crucial roles in regulating gene expression in both situations. This study used massive sequencing analysis to uncover molecular and functional mechanisms resulting from the short-time expression of the b isoforms of TIA1 and TIAR and HuR in HEK293 cells.