Project description:This SuperSeries is composed of the following subset Series: GSE3953: Comparison of NCTC 11168 isolate vs. genome-sequenced variant, microaerobic and anaerobic conditions GSE3954: Genomotyping of 11168-GS vs. 11168-O Abstract: The genome sequence of the enteric bacterial pathogen Campylobacter jejuni NCTC 11168 (11168-GS) was published in 2000, providing a valuable resource for the identification of C. jejuni-specific colonization and virulence factors. Surprisingly, the 11168-GS clone was subsequently found to colonize 1-day-old chicks following oral challenge very poorly compared to other strains. In contrast, we have found that the original clinical isolate from which 11168-GS was derived, 11168-O, is an excellent colonizer of chicks. Other marked phenotypic differences were also identified: 11168-O invaded and translocated through tissue culture cells far more efficiently and rapidly than 11168-GS, was significantly more motile, and displayed a different morphology. Serotyping, multiple high-resolution molecular genotyping procedures, and subtractive hybridization did not yield observable genetic differences between the variants, suggesting that they are clonal. However, microarray transcriptional profiling of these strains under microaerobic and severely oxygen-limited conditions revealed dramatic expression differences for several gene families. Many of the differences were in respiration and metabolism genes and operons, suggesting that adaptation to different oxygen tensions may influence colonization potential. This correlates biologically with our observation that anaerobically priming 11168-GS or aerobically passaging 11168-O caused an increase or decrease, respectively, in colonization compared to the parent strain. Expression differences were also observed for several flagellar genes and other less well-characterized genes that may participate in motility. Targeted sequencing of the sigma factors revealed specific DNA differences undetected by the other genomic methods Refer to individual Series
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:Abstract: The genome sequence of the enteric bacterial pathogen Campylobacter jejuni NCTC 11168 (11168-GS) was published in 2000, providing a valuable resource for the identification of C. jejuni-specific colonization and virulence factors. Surprisingly, the 11168-GS clone was subsequently found to colonize 1-day-old chicks following oral challenge very poorly compared to other strains. In contrast, we have found that the original clinical isolate from which 11168-GS was derived, 11168-O, is an excellent colonizer of chicks. Other marked phenotypic differences were also identified: 11168-O invaded and translocated through tissue culture cells far more efficiently and rapidly than 11168-GS, was significantly more motile, and displayed a different morphology. Serotyping, multiple high-resolution molecular genotyping procedures, and subtractive hybridization did not yield observable genetic differences between the variants, suggesting that they are clonal. However, microarray transcriptional profiling of these strains under microaerobic and severely oxygen-limited conditions revealed dramatic expression differences for several gene families. Many of the differences were in respiration and metabolism genes and operons, suggesting that adaptation to different oxygen tensions may influence colonization potential. This correlates biologically with our observation that anaerobically priming 11168-GS or aerobically passaging 11168-O caused an increase or decrease, respectively, in colonization compared to the parent strain. Expression differences were also observed for several flagellar genes and other less well-characterized genes that may participate in motility. Targeted sequencing of the sigma factors revealed specific DNA differences undetected by the other genomic methods This SuperSeries is composed of the SubSeries listed below.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:We report the use of RNA-seq analysis for the determination of RPKM transcript levels in wildtype and fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for comparison of gene expression levels.
Project description:In order to cause disease, the food- and water-borne pathogen Campylobacter jejuni must face the extreme acidity of the host stomach as well as cope with pH fluctuations in the intestine. In the present study, C. jejuni NCTC 11168 was grown under mild acidic conditions mimicking those encountered in the intestine. The resulting transcriptional profiles revealed how this bacterium fine-tunes gene expression in response to acid stress. This adaptation involves differential expression of respiratory pathways, induction of genes for phosphate transport and repression of energy generation and intermediary metabolism genes. Keywords: acid shock; dose response; transcriptional response to 3 mild-acidic pH growth conditions (pH6.5, pH 6.0 and pH5.0)
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites. Campylobacter jejuni NCTC 11168 fur perR mutant was grown to late log phase, RNA was purified and used for differential RNA-sequencing by 454 sequencing with barcoded libraries, and used for determination of genome-wide transcription start sites
Project description:Erythromycin is the drug of choice to treat campylobacteriosis, but resistance to this antibiotic is rising. The adaptive mechanisms employed by Campylobacter jejuni to erythromycin treatment remain unknown. The aim of this study is to determine the molecular basis underlying CampylobacterM-bM-^@M-^Ys immediate response to Ery treatment. The design utilized an available two color microarray slide for the entire transcriptome of Campylobacter jejuni wild type strain NCTC 11168. One hybridizations were performed: sham-treated NCTC 11168 v.s. lethal dose erythromycin treated NCTC 11168. Samples were independently grown and harvested. There were three biological replicates of each sample.