Project description:Background & Aims: The complex interactions between diet and the microbiota that influence mucosal inflammation and inflammatory bowel disease are poorly understood. Experimental colitis models provide the opportunity to control and systematically perturb diet and the microbiota in parallel to quantify the contributions between multiple dietary ingredients and the microbiota on host physiology and colitis. Methods: To examine the interplay of diet and the gut microbiota on host health and colitis, we fed over 40 different diets with varied macronutrient sources and concentrations to specific pathogen free or germ free mice either in the context of healthy, unchallenged animals or dextran sodium sulfate colitis model. Results: Diet influenced physiology in both health and colitis across all models, with the concentration of protein and psyllium fiber having the most profound effects. Increasing dietary protein elevated gut microbial density and worsened DSS colitis severity. Depleting gut microbial density by using germ-free animals or antibiotics negated the effect of a high protein diet. Psyllium fiber influenced host physiology and attenuated colitis severity through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary protein and psyllium fiber in parallel explain most variation in gut microbial density, intestinal permeability, and DSS colitis severity, and changes in one ingredient can be offset by changes in the other. Conclusions: Our results demonstrate the importance of examining complex mixtures of nutrients to understand the role of diet in intestinal inflammation. Keywords: IBD; Diet; Microbiota; Mouse Models; Systems Biology
2017-10-30 | GSE104461 | GEO
Project description:Glycerol monolaurate alter gut microbiota in yellow feathered broilers
Project description:Intestinal microbial dysbiosis is associated with Crohn’s disease (CD). However, the mechanisms leading to the chronic mucosal inflammation that characterizes this disease remain unclear. To evaluate causality and mechanisms of disease, we conducted a systems level study of the interactions between the gut microbiota and host in new-onset pediatric patients. We report an altered host proteome in CD patients indicative of impaired mitochondrial functions. A downregulation of mitochondrial proteins implicated in H2S detoxification was observed, while the relative abundance of H2S microbial producers was increased. Network correlation analysis identified Atopobium parvulum as the central hub of H2S producers. Gnotobiotic and conventionalized colitis-susceptible interleukin-10-deficient (Il10-/-) mice demonstrated that A. parvulum induced colitis, a phenotype requiring the presence of the intestinal microbiota. Administration of bismuth, a H2S scavenger, prevented A. parvulum-induced colitis in Il10-/- mice. This study identified host-microbiota interactions that are disturbed in CD patients providing mechanistic insights on CD pathogenesis.
2016-09-29 | PXD002882 | Pride
Project description:Administration of glycerol monolaurate controls hepatic lipid metabolism and intestinal barrier
Project description:Antibiotics have long-lasting consequences on the gut microbiota with the potential to impact host physiology and health. However, little is known about the transgenerational impact of an antibiotic-perturbed microbiota. Here we demonstrated that adult pregnant female mice inoculated with a gut microbial community shaped by antibiotic exposure passed on their dysbiotic microbiota to their offspring. This dysbiotic microbiota remained distinct from controls for at least 5 months in the offspring without any continued exposure to antibiotics. By using IL-10 deficient mice, which are genetically susceptible to colitis, we showed mice that received an antibiotic-perturbed gut microbiota from their mothers had increased risk of colitis. Taken together, our findings indicate that the consequences of antibiotic exposure affecting the gut microbiota can extend to a second generation.
Project description:Microbial dysbiosis has been identified in adult inflammatory bowel disease (IBD) patients. However, microbial composition and functional interplay between host genetics and microorganisms in early IBD onset remain poorly defined. Here, we identified and demonstrated the causal effect of Atopobium parvulum and the gut microbiota in pediatric IBD. Microbiota and proteomic profiling revealed that the abundance of A. parvulum, a potent H2S producer, was associated with increased disease severity and a concurrent reduction in the expression of the host H2S detoxification pathway. In the Il10-/- mouse model of inflammation, A. parvulum induced severe pancolitis that was dependent on the presence of the gut microbiota. In addition, we demonstrated that administration of bismuth, an H2S scavenger, prevented A. parvulum-induced colitis. Our findings identified Atopobium parvulum as a major mediator of inflammation severity, and revealed an alteration of the balance between the production and detoxification of H2S in the gastrointestinal tract.
2022-02-22 | PXD000690 | Pride
Project description:Acacetin ameliorates experimental colitis in mice via regulating the composition of gut microbiota