Project description:Comparison among ES, EC, TS, NS, differentiated neural cells derived from NS and placenta in addition to ES-N2B27 neural induction. Comparison among ES, EC, TS, NS, differentiated neural cells derived from NS and placenta in addition to ES-N2B27 neural induction.
Project description:Comparison among ES, EC, TS, NS, differentiated neural cells derived from NS and placenta in addition to ES-N2B27 neural induction. Keywords: cell type comparison design,development or differentiation design,time series design
Project description:Comparison among ES, EC, TS, NS, differentiated neural cells derived from NS and placenta in addition to ES-N2B27 neural induction.
Project description:Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. This SuperSeries is composed of the following subset Series: GSE4075: Neural induction (Embrioid bodies-Retinoic acid) GSE4076: Neural induction (N2B27 monolayer cluture) GSE4077: ES, EC, NS, TS, Placenta and Neural induction (N2B27) comaprison Keywords: SuperSeries Refer to individual Series
Project description:Core circuits of transcription factors stabilize stem and progenitor cells by suppressing genes required for differentiation. We do not know how such core circuits are reorganized during cell fate transitions to allow differentiation and lineage choice to proceed. Here, we asked how the pluripotency circuit, a core transcriptional circuit that maintains mouse embryonic stem (ES) cells in a pluripotent state, is dismantled as ES cells differentiate and choose between the neural ectodermal and mesendodermal progenitor cell fates. When ES cells are recultured from pluripotency maintaining conditions to the basal media N2B27, the expression of the pluripotency circuit genes begins to change. At 48 hours post N2B27 addition, the ES cells are competent to respond to differentiation signals. Here, our microarray analysis compares the gene expression profile of ES cells vs. the gene expression profile of cells that have been treated with N2B27 for 48 hours, reaching the competent state.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.