Project description:Acquisition of resistance to the PARP inhibitor, Olaparib, constitutes a major challenge for the treatment of advanced prostate cancer. The purpose of this study was to identify molecular targets responsible for the development of acquired Olaparib resistance in advanced prostate cancer. Towards this goal, next-generation sequencing (NGS)-based gene expression profiling (RNA-Sequencing; RNA-Seq) was performed on castration-sensitive prostate cancer (CSPC)/Olaparib-sensitive LNCaP cells, castration-sensitive prostate cancer (CSPC)/Olaparib-resistant LN-OlapR cells, castration-resistant prostate cancer (CSPC)/Olaparib-sensitive C4-2B cells, and castration-resistant prostate cancer (CSPC)/Olaparib-resistant 2B-OlapR cells.
Project description:Sequencing of olaparib-resistant PEO1 derivatives (C4, C5, C10 and C18) and parental PEO1 (P1 and P2) cells was performed in order to determine mechanisms of acquired resistance in the resistant cell lines. PEO1 parental cell lines were authenticated prior to sequencing. PEO1 parental were confirmed to be BRCA2-mutated (5139C>G). Olaparib PEO1 resistant cells were generated through a step-wise escalation of olaparib (10nM to 8uM olaparib). In olaparib resistant lines an increase canonical Wnt signaling and loss of of non-canonical Wnt signaling was observed.
Project description:Analysis of enzalutamide- and/or olaparib-responsive gene expression in prostate cancer cells. The hypothesis tested in the present study was that enzalutamide influences the expression of genes that are involved in important bioprocesses in prostate cance rcells, including DNA damage response genes and this effect may synergize with poly(ADP-ribose) polymerase inhibitor olaparib in cytotoxicity to prstate cancer cells. prostate cancer cells were pretreated with enzalutamide or vehicle control DMSO for 24 h, followed by treatment with enzalutamide, olaparib, enzalutamide+olaparib, or vehicle control DMSO for 48 h. Gene expression in enzalutamide+olaparib-treated cells was compared with taht in vehicle control- and single agent-treated cells.
Project description:PARP inhibitors (PARPi) resistance is not well understood in prostate cancer (PC). The aim of the study was to identify new resistance mechanisms in PC by developing acquired olaparib-resistance PC cell lines.
Project description:We examine the gene expression and chromatin accessibility profiles of four human castration-resistant prostate cancer cell lines including two representative of small-cell neuroendocrine prostate cancer
Project description:We examine the gene expression and chromatin accessibility profiles of four human castration-resistant prostate cancer cell lines including two representative of small-cell neuroendocrine prostate cancer
Project description:Docetaxel and cabazitaxel are the chemotherapy agents used in castration-resistant prostate cancer. However, most patients eventually develop resistance to these treatments. The aim of the study was to identify key molecular genes and networks associated with taxanes resistance in 2 models of docetaxel-resistant and cabazitaxel-resistant castration-resistant prostate cancer cell lines.
Project description:Docetaxel-based chemotherapy is the standard first-line therapy in metastatic castration-resistant prostate cancer. However, most patients eventually develop resistance to this treatment. The aim of the study was to identify key molecular genes and networks associated with docetaxel resistance in 2 models of docetaxel-resistant castration-resistant prostate cancer cell lines.
Project description:Analysis of enzalutamide- and/or olaparib-responsive gene expression in prostate cancer cells. The hypothesis tested in the present study was that enzalutamide influences the expression of genes that are involved in important bioprocesses in prostate cance rcells, including DNA damage response genes and this effect may synergize with poly(ADP-ribose) polymerase inhibitor olaparib in cytotoxicity to prstate cancer cells.
Project description:We added docetaxel to the culture medium of prostate cancer cell lines PC3 and DU145, and gradually increased the concentration. After a long time of culture, we obtained a docetaxel resistant prostate cancer cell lines.