Project description:We identified inactivating mutations in NEK10, a poorly characterized human protein kinase, in a novel human bronchiectasis syndrome. In order to understand effects of loss of its function on the airway phosphoproteome, NEK10 was CRISPR/Cas9 targeted in human airway air-liquid interface (ALI) cultures with 2 independent guides and assayed by iron-enrichment phosphoproteomics.
Project description:Non-cystic fibrosis bronchiectasis is a severe respiratory disease characterized by progressive loss of lung function, resulting in high morbidity and even early mortality. Current treatments cannot repair progressive lung damage, which encouraged the exploration of stem and progenitor cell-based regenerative therapies. In current study, we found that the P63+ progenitor cells normally located in airway basal layer could appear in the alveolar spaces of bronchiectasis patients. We successfully cloned and expanded the progenitor cells from the airway brushing tissues of patients. Then we conducted a randomized, single-blind, controlled, phase 1/2 trial to evaluate the safety and efficacy of autologous P63+ progenitor cells transplantation in bronchiectasis patients.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as âTh2 highâ based on lower airway Th2 gene signature expression. Consistent with this classification, âTh2 highâ subjects displayed elevated total IgE and blood eosinophil levels relative to âTh2 lowâ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as âTh2 highâ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as âTh2 highâ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma. Upper airway (nasal) and lower airway (bronchial) epithelial brushings obtained from a cohort of 54 allergic asthmatics and 30 matched healthy controls were profiled by gene expression by microarray. Subjects were assayed for gene expression, serum total IgE, blood eosinophils and serum periostin.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as ‘Th2 high’ based on lower airway Th2 gene signature expression. Consistent with this classification, ‘Th2 high’ subjects displayed elevated total IgE and blood eosinophil levels relative to ‘Th2 low’ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as ‘Th2 high’ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as ‘Th2 high’ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma.
Project description:This study are compares the transcriptomes of lower airway constitutive connective tissue mast cells (MCs), characterized by low expression of b7 integrin (B7low), and induced mucosal MCs, characterized by high b7 integrin (B7hi) at rest and in response to repeated inhalation of house dust mite extract (HDM). Lower airway b7hi and b7low MCs were flow cytometrically isolated from female 5-7 week old C57BL/6 mice following 6 challenges (2x/week for three weeks) with saline (PBS) or 3 ug house dust mite extract (HDM). Each sample is derived from pooled lung digests from three mice to reduce experimental variance. Samples were sequenced on an Illumina NextSeq 500
Project description:Our findings have clinical implications. Identification of sputum exosomal miRNA helps explore the important biological pathways underlying the pathogenesis of bronchiectasis, thus unraveling candidate targets for future interventions of PA colonization. Apart from canonical inflammatory pathways, we have unraveled the modulation of longevity regulation pathway which opens a new avenue for exploring how PA colonization interacts with the airway epithelium. The significant correlation between sputum inflammatory biomarkers and miR-92b-5p and miR-223-3p provided further evidence on the unresolved inflammation in the PA-colonized microenvironment. However, causality cannot be inferred based on the current study design.