Project description:Using a high-throughput gene expression profiling technology, we have illuminated novel potential microRNA (miRNA) components of the molecular disease process underlying human hypertrophic cardiomyopathy (HCM). It is hoped that this will fuel future research endeavors that will eventually uncover the role miRNAs may play in the phenotypic heterogeneity of the disease, and thus, provide potential tools for identifying patients with benign versus malignant forms of the disease. Case (n = 107)-Control (n=20) study comparing the microRNA transcriptome of cardiac tissues from patients with hypertrophic cardiomyopathy to the microRNA transcriptome of control donor cardiac tissues.
Project description:Using a high-throughput gene expression profiling technology, we have been able to develop new hypotheses regarding the molecular pathogenic mechanisms of human hypertrophic cardiomyopathy (HCM). It is hoped that these hypotheses, among others generated by this data, will fuel future research endeavors that will uncover novel biomarkers, prognostic indicators, and therapeutic targets to improve our ability to diagnose, counsel, and treat patients with this highly heterogeneous and potentially life-threatening condition. Case-control study comparing the messenger RNA transcriptome of cardiac tissues from patients with hypertrophic cardiomyopathy to the transcriptome of control donor cardiac tissues.
Project description:This study utilized TMT to characterize the cardiac proteomic differences between patients with hypertrophic cardiomyopathy and controls.
Project description:This study used TMT-pro method to look for phosphoproteomic differences in heart tissue of patients with hypertrophic cardiomyopathy and controls
Project description:To understand the interplay between cardiomyocyte and nonmyocyte cell types in human obstructive and non-obstructive hypertrophic cardiomyopathy, single nuclei RNA-sequencing was performed on 2 unused donor hearts, 1 obstructive HCM specimen, and 6 non-obstructive HCM specimens.
Project description:Using a high-throughput gene expression profiling technology, we have illuminated novel potential microRNA (miRNA) components of the molecular disease process underlying human hypertrophic cardiomyopathy (HCM). It is hoped that this will fuel future research endeavors that will eventually uncover the role miRNAs may play in the phenotypic heterogeneity of the disease, and thus, provide potential tools for identifying patients with benign versus malignant forms of the disease.
Project description:Using a high-throughput gene expression profiling technology, we have been able to develop new hypotheses regarding the molecular pathogenic mechanisms of human hypertrophic cardiomyopathy (HCM). It is hoped that these hypotheses, among others generated by this data, will fuel future research endeavors that will uncover novel biomarkers, prognostic indicators, and therapeutic targets to improve our ability to diagnose, counsel, and treat patients with this highly heterogeneous and potentially life-threatening condition.
Project description:MicroRNAs negatively regulate gene expression and may serve as biomarkers for human cardiomyopathy. In the domestic cat, hypertrophic cardiomyopathy (HCM) represents the most common primary cardiomyopathy. In humans, the etiology of HCM is linked to mutations in genes of contractile muscle proteins, while in cats a clear proof for causal mutations is missing. The etiology of feline HCM is uncertain. Diagnosis is made by heart ultrasound examination and measuring the serum level of N-terminal pro B-type natriuretic peptide. The purpose of this study was to investigate whether microRNA profiles in the serum of cats with HCM are different from the profiles of healthy cats and whether specific miRNAs can be detected to serve as potential biomarkers for feline HCM or may help in understanding the etiology of this disease Blood was drawn from two groups of cats: 12 healthy cats and 11 cats suffering from hypertrophic cardiomyopathy. After clotting, samples were centrifuged and total mRNA was extracted from serum. These 23 serum samples were analyzed and the groups were compared
Project description:Hypertrophic cardiomyopathy and dilated cardiomyopathy are different diseases with distinct clinical manifestations, and the confounding pathogenic mechanisms behind them remains unclear. The purpose of this study was to find out the crucial proteins and pathways in severe cardiomyopathy patients, through the proteomic technology in myocardial tissues.