Project description:Terahertz (THz) is an electromagnetic wave with a spectrum between microwave and infrared. Due to its unique characteristics, THZ has great application prospects in both medical imaging and biomedicine. however, its effects on the angiogenesis capacity of human umbilical vein endothelial cells (HUVECs) are still unclear. The assay for transposase-accessible chromatin (ATAC) sequencing indicated that the expression of genes related to cytoskeletal increased significantly after THz irradiation.
Project description:Terahertz (THz) is an electromagnetic wave with a spectrum between microwave and infrared. Due to its unique characteristics, THZ has great application prospects in both medical imaging and biomedicine. However, its effects on the angiogenesis capacity of human umbilical vein endothelial cells (HUVECs) are still unclear. RNA sequencing indicated that the expression of genes related to cytoskeleton increased significantly after THz irradiation.
Project description:Question Addresses: What is the gene expression profile from human umbilical vein endothelial cells (HUVEC) and human Jurkat T cells after irradiation (IR)? What, if any, is the effect of co-culturing these two cell types on gene expression? There are eight experimental conditions for this experiment: (1) non-irradiated HUVEC; (2) irradiated HUVEC; (3) non-irradiated Jurkat; (4) irradiated Jurkat; (5) non-irradiated HUVEC + non-irradiated Jurkat+; (6) non-irradiated HUVEC + irradiated Jurkat; (7) irradiated HUVEC + non-irradiated Jurkat; (8) irradiated HUVEC + irradiated Jurkat. A common, pooled reference consisting of RNA taken from conditions 1-8 as described above was used for all hybridizations.
Project description:We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied teraherz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.
Project description:The biological impacts of terahertz (THz) waves as well as their biosafety have emerged as a new area of concern with the gradual application of terahertz radiation. In recent years, many studies have been conducted to investigate the influence of terahertz on living organisms, such as animals or cell cultures; however, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans), one of the most acceptable model organisms for studying various forms of ionizing and non-ionizing radiation exposure was used to evaluate the effects of terahertz waves on the entire organism. In this study, the integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of cuticle collagen gene to impair the movement of C. elegans. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.
Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. Growing in petri dish mouse mesenchymal stem cell cultures are irradiated for 12 hours with pulsed ultrafast (35 fs) broadband (centered at ~10 THz) source. Three independent biological experiments were conducted. In each experiment, a control mMSC culture was placed adjacent to the irradiated sample, and the temperature was kept at 26-27M-BM-:C for both the control and the irradiated sample. Immediately after completing the irradiation, total RNA was extracted from the irradiated sample and the control, and microarrays were used to identify differential changes in gene expression between the irradiated sample and its respective control. In each experiment, the mMSC cultures were synchronized to be at the same differentiation time point immediately before the irradiation.