Project description:Background & Aims: Other than hepatitis B or C virus infection, Hepatitis E virus (HEV) infection is generally asymptomatic or leads to acute and self-limiting hepatitis. However, the mechanism of host cell defense against HEV is unclear. Viruses are known to perturb host cellular metabolism to enable their replication and spread. AMP-activated protein kinase (AMPK) activation is crucial for the regulation of cell homeostasis. We thus investigated the role of AMPK in HEV infection. Methods: Huh7, THP1 and HepG2 cells inoculated with infectious HEV viral particle or Huh7 and organoids transfected with in vitro generated subgenomic or full-length GT3 (Kernow-C1 p6 strain) HEV RNA, namely, p6Luc or p6 were used to model HEV infection. Viral replication and genes expression were quantified. Activation of AMPK, innate immune response and autophagy process were assessed. Results: We found HEV infection can trigger AMPK activation by phosphorylation of AMPK at threonine 172 by transfecting HEV viral RNA into host cells or inoculating host cells with infectious HEV viral particle. The activation of AMPK is associated with HEV induced mitochondrial damage and ATP deficiency. Pharmacological activation of AMPK using 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) attenuated HEV replication, which was reversed by an AMPK inhibitor (compound C). Lentivirus-mediated knockdown of AMPK provided further evidence that AMPK has an antiviral effect on HEV replication. These results suggested that AMPK activation is a potent strategy of host cells for HEV clearance. Consistent with its antiviral effect, AMPK activation potentiated the expression of genes with antiviral properties (e.g., IFNs, ISG15, and IRF9) and inhibited inflammatory response (e.g., NF-KB NLRP3 and IL-1β). Meanwhile, HEV and activated AMPK also decreased autophagosome accumulation by decreasing induction of autophagy and autophagic degradation. Consistently, we found inhibition of AMPK efficiently augmented HEV induced autophagosome accumulation, evidenced by a marked increase in LC3II. Our previous study showed that rapamycin, an activator of autophagic induction by inhibiting mTOR, and Bafilomycin A1, an inhibitor of autophagic degradation, has a potent pro-HEV effect under AICAR treatment. Moreover, Wortmannin inhibiting autophagic induction recover AMPK inhibitor induced HEV replication. Together, these results suggested that HEV induced AMPK activation can serve to protect HEV infected cells from HEV infection by attenuating autophagosome and promoting innate immunity. Conclusions: Here we show that HEV infection can activate AMPK phosphorylation, which attenuates autophagosome accumulation and increases innate immune signaling. Thus, the AMPK activation in response to HEV infection is critical in host cells for rapid viral clearance by coordinating autophagic process and establishing persistent antiviral immunity.
Project description:The natural history of chronic hepatitis B virus (HBV) infection could be divided in different phases by transaminase and HBV replication levels. However, it remains unknown how the intrahepatic transcriptomes in patients are correlated with the clinical phases. Here, we determined the intrahepatic transcriptomes of chronic hepatitis B patients and examined the role of specific groups of genes, including immune-related genes, in the control of hepatitis B virus infection. The transcriptomes of 83 chronic hepatitis B patients (22 immune tolerant, 50 immune clearance, and 11 inactive carrier state) were analyzed by performing microarray analysis of liver biopsies.KEGG pathway analysis showed that immune response genes and interferon-stimulated genes were up-regulated in the immune clearance phase. Although immune tolerant patients and inactive state carriers had significantly different serum viral loads, the hepatic transcriptomes of the two groups were largely similar and only significantly differed in the expression of 109 genes (p < 0.01). Thus, we hypothesized that some of the 109 genes may be involved in HBV control and identified genes of interest by performing systematic screening using specific siRNAs. We showed that silencing candidate genes such as EVA1A resulted in significantly increased viral replication. Conversely, overexpression of candidate genes suppressed virus replication. Conclusions: The immune related pathways were up-regulated in the immune clearance phase but not in the inactive carrier phase. A number of host genes unrelated to immune pathways were expressed in the inactive carrier phase and these may participate in the control of hepatitis B virus replication, resulting in low viral replication. This dataset is part of the TransQST collection.
Project description:Interventions: Juzentaihoto is administered orally 7.5g/day in 2-3 dosages, before or between meals Total duration of test: 24 weeks starting from one week after surgery
Juzentaihoto is not administered.
Primary outcome(s): 1.ECOG’s Performance Status (ECOG=Eastern Cooperative Oncology Group) 2.Weight 3.QOL-ACD (The QOL Questionnaire for Cancer Patients Treated with Anticancer Drugs) 4.Hematological test (RBC, Hb, Ht, WBC, differential leukocyte count, PLT) 5.Serum albumin 6.Cell-mediated immunity (HLA-DR/CD3, CD11b/CD8, NK-cell activity) 7.Blood cytokine (IL-6, IL-10, IL-12, IL-18, TGF-beta, IFN-gamma) 8.Carcinoembryonic antigen (CEA) 9.Recurrence of cancer 10.Metastasis of cancer 11.Duration of anticancer drug therapy
Study Design: Parallel Randomized
Project description:The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-gamma and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-beta released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.
Project description:N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification on RNA. NK cells are the predominant innate lymphoid cells that mediate anti-viral and anti-tumor immunity. However, whether and how m6A modifications affect NK cell immunity remains unknown. Here, we discover that YTHDF2, a well-known m6A reader, is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impairs NK cell anti-tumor and anti-viral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. YTHDF2 promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Transcriptome-wide screening identifies Tardbp to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. Collectively, we elucidate the biological roles of m6A modifications in NK cells and highlight a new direction to harness NK cell anti-tumor immunity.
Project description:Understanding the molecular mechanisms of T cell exhaustion and reinvigoration is crucial to improving T cell based immunotherapy. In this study we confirmed key differences between memory and exhausted antigen-specific CD8+ T cells in hepatitis C virus infection before and after antiviral treatment. After viral cure, we observed the although phenotypically they seem to recover, functionally they showed little improvement and critical transcriptional regulators remained in exhausted state.
Project description:There has been no report on whether the patients with colorectal cancer who are also inactive Hepatitis B Carriers should receive Prophylactic Use or preemptive Use of an Anti-viral Drug Entecavir. This open, randomized controlled clinical trial aims to compare the impact of the prophylactic use or preemptive use of an anti-viral drug Entecavir on the outcomes of patients with colorectal cancer who are also inactive hepatitis B carriers during chemotherapy and the subsequent follow-ups.