Project description:PREMISE OF THE STUDY:Senna spectabilis var. excelsa (Fabaceae) is a South and Central American tree of great ecological importance and one of the most common species in several sites of seasonally dry forests. Our goal was to develop microsatellite markers to assess the genetic diversity and structure of this species. METHODS AND RESULTS:We designed and assessed 53 loci obtained from a microsatellite-enriched library and an intersimple sequence repeat library. Fourteen loci were polymorphic, and they presented a total of 39 alleles in a sample of 61 individuals from six populations. The mean values of observed and expected heterozygosities were 0.355 and 0.479, respectively. Polymorphism information content was 0.390 and the Shannon index was 0.778. CONCLUSIONS:Polymorphism information content and Shannon index indicate that at least nine of the 14 microsatellite loci developed are moderate to highly informative, and potentially useful for population genetic studies in this species.
Project description:The first complete chloroplast genome (cpDNA) sequence of Altingia excelsa was determined from Illumina HiSeq pair-end sequencing data in this study. The cpDNA is 160,861 bp in length, contains a large single copy region (LSC) of 89,126 bp and a small single copy region (SSC) of 19,011 bp, which were separated by a pair of inverted repeats (IR) regions of 26,362 bp each. The genome contains 127 genes, including 82 protein-coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. Phylogenomic analysis showed that A. excelsa and Liquidambar formosana clustered in a clade in Saxifragales order.
Project description:Microbial natural products are among the main sources of compounds used in the medical biotechnology field for the purpose of drug development. However, as antibiotic resistance in pathogenic microorganisms is known to be increasing dramatically, there exists a need to develop new antibiotics. Actinomycetia have proven to be a good source of biologically active compounds, although the rediscovery of previously known compounds significantly slows down the introduction of new antibiotics. As a consequence, increasing attention is being paid to the isolation of actinomycete strains from previously unexplored sources, which can significantly increase the likelihood of discovering new biologically active compounds. This study investigated the diversity and bioactive potential of 372 actinomycete strains isolated from the rhizosphere soil of Juniperus excelsa M. Bieb. The examined actinomycete strains belonged to 11 genera, namely, Actinoplanes, Actinorectispora, Amycolatopsis, Kribbella, Micrococcus, Micromonospora, Nocardia, Promicromonospora, Rhodococcus, Saccharopolyspora and Streptomyces. The bioactive potential of each isolated actinomycete strain was determined on the basis of its ability to produce antimicrobial metabolites against Gram-positive and Gram-negative bacteria and yeast. Some 159 strains (42.74%) exhibited antimicrobial activity against at least one of the tested microbial strains. The dereplication analysis of the extract of the Streptomyces sp. Je 1-651 strain, which exhibited strong antimicrobial activity, led to the annotation of spiramycins and stambomycins. Moreover, the phylogenetic analysis based on the 16S rRNA gene sequence of the Je 1-651 strain revealed it to be close to the S. ambofaciens.