Project description:Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners.
Project description:We investigated the effect of Spiroplasma infection on Drosophila hemolymph protein content using Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS). To this end, we extracted total hemolymph from uninfected and infected 10 days old females. At this age, Spiroplasma is already present at high titers in the hemolymph but does not cause major deleterious phenotypes to the fly. Extraction was achieved by puncturing the thorax and drawing out with a microinjector. Four replicates were made
Project description:Spiroplasma eriocheiris, a pathogen that causes mass mortality of Chinese mitten crab Eriocheir sinensis, is a wall less bacteria and belongs to the Mollicutes. This study was designed to investigate the effects of colchicine on S. eriocheiris growth, cell morphology, and proteins expression. We found that in the presence of colchicine, the spiroplasma cells lost their helicity, and the length of the cells in the experimental group was longer than that of the control. With varying concentrations of the colchicine treatment, the total time to achieve a stationary phase of the spiroplasma was increased, and the cell population was decreased. The virulence ability of S. eriocheiris to E. sinensis was effectively reduced in the presence of colchicine. To expound the toxical mechanism of colchicine on S. eriocheiris, 208 differentially expressed proteins of S. eriocheiris were reliably quantified by iTRAQ analysis, including 77 up-regulated proteins and 131 down-regulated proteins. Especially, FtsY, putative Spiralin, and NADH oxidase were down-regulated. F0F1 ATP synthase subunit delta, ParB, DNABs, and NAD(FAD)-dependent dehydrogenase were up-regulated. A qRT-PCR was conducted to detect 7 expressed genes from the iTRAQ results during the incubation. The qRT-PCR results were consistent with the iTRAQ results. All of our results indicate that colchicine have a strong impact on the cell morphology and cellular metabolism of S. eriocheiris.