Project description:The biocontrol agent Pythium oligandrum, which is a member of phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum CBS530.74 strain, for the control of RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality at 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced the attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). Transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2,500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested modulation of plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect involving direct inhibition of M. incognita, potential priming of tomato plant defenses, and plant growth promotion.
2024-04-01 | GSE262653 | GEO
Project description:Plant metagenomics tomato virus for NDR
Project description:MicroRNAs are crucial regulator of reprogramming of gene expression cascade during plant-pathogen interaction. We have used tomato (Pusa Ruby) plant and early blight pathogen, Alternaria for the analysis of tomato miRNA expression profiles in a compatible interaction. Illumina next generation sequencing (NGS) technique based whole transcriptome analysis revealed that, (i) about 188 known miRNAs, ranging from 18nt to 24nt expressed in tomato, which belonged to 124 miRNA families and (ii) both conserved and Solanaceae specific miRNAs were differentially expressed. Most of the miRNAs were down-regulated, and around 7 miRNAs were highly differentially regulated (log2FC ≥ ±3). Furthermore, using stringent selection criteria we could detect approximately 74 putative novel miRNAs. GO terms enrichment and KEGG pathway analyses of predicted targets of differentially expressed miRNAs have been performed to identify the pathways that were perturbed during the infection. Supported by DBT, Govt. of India.
Project description:Plant-based diets could be a key source of microRNAs in animals. Plant microRNAs are cross-kingdom gene expression regulators that could modulate mammalian gene expression, influencing their physiology. Therefore, it is important to identify the microRNA expression profile of plant foods in order to identify potential target genes and biological functions in the mammalian host. Next-generation sequencing was applied to identify microRNAs in RNA samples derived from nuts (walnut and almond), vegetables (spinach) and fruits (orange, apple, olive, pear, and tomato). Our data revealed that edible plant contain a large number and diverse type of microRNAs.
Project description:The gram- positive bacterial pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) causes huge economic losses by infecting tomato plants worldwide. Cmm can be spread by contaminated seeds and transplants, penetrating the plant through natural openings or wounds and is transferred through the plant xylem. While in recent years significant progress has been made to elucidate plant responses to pathogenic gram-negative bacteria by gene expression studies, the molecular mechanisms that lead to disease symptoms caused by gram-positive bacteria like Cmm remain elusive. An indigenous virulent Cmm strain isolated from a farm crop of Pomodoro tomatoes in southern Greece was used for the infection of EKSTASIS F1 hybrid tomato seedlings. Here, we present the results of a deep RNA- sequencing (RNA-seq) analysis performed to characterize the dynamic expression profile of tomato genes upon Cmm infection.
Project description:Trichoderma harzianum T34 is a fungal strain able to promote the plant growth and to increase plant defense responses. Trichoderma harzianum transformants expressing the amdS gene, encoding an acetamidase, of Aspergillus nidulans produce a higher plant development than the wild type T34. We used microarrays to analyze the physiological and biochemical changes in tomato plants produced as consequence of interaction with Trichoderma harzianum T34 and amdS transformants
Project description:The Virochip microarray (version 4.0) was used to detect viruses in patients from North America with unexplained influenza-like illness at the onset of the 2009 H1N1 pandemic. We used metagenomics-based technologies (the Virochip microarray) and deep sequencing to analyze nasal swab samples from individuals with 2009 H1N1 infection. This Series includes the Virochip microarray data only.
Project description:As virus diseases cannot be controlled by traditional plant protection methods the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomics approaches used for virus diagnostics, offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, why their usage can reduce the risk of using infected material for a new plantation. Here we used a special field, deep sequencing of virus derived small RNAs, of this high throughput method for virus diagnostics and determined viromes of vineyards in Hungary. With NGS of virus derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which have never been described in Hungary before. Virus presence didn’t correlated with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections mostly caused by the usage of infected propagating material. Our results, validated by other molecular methods, highlighted further questions to be answered before these method can be introduced as a routine, reliable test for grapevine virus diagnostics.
Project description:An intriguing new paradigm in plant biology is that systemically-mobile mRNAs play a role in coordinating development. In this process, specific mRNAs are loaded into the phloem transport stream for translocation to distant tissues, where they may impact developmental processes. However, despite its potential significance for plant growth regulation, mRNA trafficking remains poorly understood and challenging to study. Here we show that phloem-mobile mRNAs can also traffic between widely divergent species from a host to the plant parasite, lespedeza dodder (Cuscuta pentagona Engelm.). Reverse transcriptase PCR (RT-PCR) and microarray analysis were used to detect specific tomato transcripts in dodder grown on tomato (Lycopersicon esculentum Mill.) that were not present in control dodder grown on other host species. The foreign transcripts included LeGAI, which has been previously shown to be translocated in the phloem, as well as nine other transcripts not reported to be mobile. Dodders are parasitic plants that obtain resources by drawing from the phloem of a host plant, and have joint plasmodesmata with host cortical cells. Although viruses are known to move between dodder and its hosts, translocation of endogenous plant mRNA has not been reported. These results point to a potentially new level of interspecies communication, and raise questions about the ability of parasites to recognize, use, and respond to transcripts acquired from their hosts. Experiment Overall Design: In order to identify potential tomato transcripts in dodder, microarray analysis was performed on RNA from dodder and hosts. Total RNA was extracted from the tomato host and from dodder grown on tomato, Arabidopsis, tobacco, or pumpkin. The host tomato RNA was included to verify that any transcripts detected in the parasite were in fact expressed in the host. The dodder samples grown on tobacco, Arabidopsis, and pumpkin served as controls for dodder genes that may cross-hybridize with tomato array probes, with three different host species used to minimize any host-specific effects on dodder gene expression. Samples were analyzed using the Affymetrix GeneChip Tomato Array and transcripts scored for presence or absence in each sample. Considering that host transcripts present in dodder would be at low levels and diluted with dodder transcripts, a P-value of 0.06 in at least two of three biological replicates was used as the threshold for scoring a transcript as being present.