Project description:As virus diseases cannot be controlled by traditional plant protection methods the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomics approaches used for virus diagnostics, offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, why their usage can reduce the risk of using infected material for a new plantation. Here we used a special field, deep sequencing of virus derived small RNAs, of this high throughput method for virus diagnostics and determined viromes of vineyards in Hungary. With NGS of virus derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which have never been described in Hungary before. Virus presence didn’t correlated with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections mostly caused by the usage of infected propagating material. Our results, validated by other molecular methods, highlighted further questions to be answered before these method can be introduced as a routine, reliable test for grapevine virus diagnostics.
Project description:In the current study, we sought to elucidate the plant-mediated mechanisms underlying the interaction between TSWV and its insect vector, F. occidentalis in the plant host, tomato, Solanum lycopersicum L. We performed replicated greenhouse and laboratory experiments to confirm that TSWV altered vector performance and behavior in ways that improved virus transmission. To characterize plant molecular mechanisms, microarray analysis was done in tomato plants that were systemically-infected with TSWV, infested with thrips, or both TSWV and thrips using Affymetrix Tomato GeneChip®. The tomato microarray chip includes many defense- and stress-related genes and genes related to chloroplast function, cell wall modification, and protein synthesis which we hypothesized would be involved in TSWV-vector interaction.
Project description:Five-week old tomato plants were subjected to four treatments: 1) mock-inoculated, 2) virus-infected, 3) spider mite infestation, and 4) virus + spider mite infestation. Plant tissue was harvested from each treatment after 7-days, frozen in liquid nitrogen and stored in -80 degree Celsius until use.
Project description:Transcriptional overlap between transgenic Arabidopsis plants expressing C4G2A from the Tomato yellow leaf curl virus (TYLCV) and a cas-1 mutant upon activation of plant immunity by treatment with the bacterial peptide elicitor flg22 (1 µM, 12 h).
Project description:Begomoviruses, the largest, most damaging and emerging group of plant viruses in the world, infect hundreds of plant species and new virus species of the group are discovered each year. They are transmitted by species of the whitefly Bemisia tabaci. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops as well as in many more agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; the causes for these differences are attributed among others to genetic diversity of vector populations, as well as to differences in the bacterial symbiont flora of the insects. Here, we performed discovery proteomic analyses in nine whiteflies populations from both B (MEAM1) and Q (MED) species with different TYLCV transmission abilities. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. Efficient vector populations from two different B. tabaci species over-expressed or downregulated expression of proteins belonging to two different molecular pathways.