Project description:This represents the first transcriptomic and epigenomic characterization of the vocalization-associated brain circuits of a non-human mammalian vocal learner (Egyptian fruit bat), yielding fundamental insights into the regulatory and molecular pathways underlying the evolution of complex vocal behavior in mammals.
Project description:Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected Jamaican fruit bats with the bat-derived influenza A virus H18N11. Using comparative single-cell RNA sequencing, we generated a single-cell atlas of the Jamaican fruit bat intestine and mesentery, the target organs of infection. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was prominent in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this virus. Our study provides insight into the virus-host relationship and thus serves as a fundamental resource for further characterization of bat immunology.
Project description:Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung and blood cells, comparing gene expression between bat, mouse and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. These genes also evolve rapidly in their coding sequence across the bat lineage. Finally, the bat complement system displays strong hemolytic and inhibitory activities. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.
Project description:Here, we used RNA sequencing and tandem mass tag (TMT)–based quantitative proteomics technology to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon. A total of 6,226 proteins were quantified, and the number of quantitative proteins is the largest in fruit proteome to date, comparable to studies in model organisms such as rice and Arabidopsis. Omics analysis showed that smaller changes occurred in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the correlation coefficients decreased during fruit development and ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying complex regulatory networks of fruit ripening in watermelon.