Project description:Protein synthesis is a major energy-consuming process of the cell, which requires controlled production and turnover of ribosomes. While the last years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3’ to 5’ exonuclease, RNase R. The structures reveal that RNase R binds initially to the 30S platform to facilitate degradation of the functionally important anti-Shine-Dalgarno sequence and decoding site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S, which is overcome by a major structural rearrangement of the 30S head, involving loss of ribosomal proteins. RNase R parallels this movement, relocating to the decoding site, by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also that the enzyme alone is sufficient for complete 30S degradation. Collectively, our results provide a mechanistic basis for RNase R-mediated 30S degradation and reveal that RNase R targets orphaned 30S subunits using a dynamic anchored binding site switching mechanism.
Project description:Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high-throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors, a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.
Project description:These are the ribosomal subunit fractions from the polysome gradients. investigating effect of heat shock on procyclic-form trypanosomes.
Project description:The Escherichia coli endoribonucleases RNase E (Rne) and RNase G (Rng) have sequence similarity and broadly similar sequence specificity. Whereas the absence of Rne normally is lethal, we show here that E. coli bacteria that lack the rne gene can be made viable by overexpression of Rng. Rng-complemented cells accumulated precursors of 5S ribosomal RNA (rRNA) and the RNA component of RNase P (i.e. M1 RNA), indicating that normal processing of these Rne-cleaved RNAs was not restored by RNase G; additionally, neither 5S rRNA nor M1 RNA was generated from precursors by RNase G cleavage in vitro. Using DNA microarrays containing 4405 Escherichia coli open reading frames (ORFs), we identified mRNAs whose steady-state level was affected by Rne, Rng or the N-terminal catalytic domain of RNase E. Most transcript species affected by RNase E deficiency were also elevated in an rne deletion mutant complemented by Rng. However, approximately 100 mRNAs that accumulated in Rne-deficient cells were decreased by rng-complemention, thus identifying targets whose processing or degradation may be the basis for RNase E essentiality. Remarkably prominent in this group were mRNAs implicated in energy-generating pathways or in the synthesis or degradation of macromolecules. Set of arrays that are part of repeated experiments Keywords: Biological Replicate
Project description:The Escherichia coli endoribonucleases RNase E (Rne) and RNase G (Rng) have sequence similarity and broadly similar sequence specificity. Whereas the absence of Rne normally is lethal, we show here that E. coli bacteria that lack the rne gene can be made viable by overexpression of Rng. Rng-complemented cells accumulated precursors of 5S ribosomal RNA (rRNA) and the RNA component of RNase P (i.e. M1 RNA), indicating that normal processing of these Rne-cleaved RNAs was not restored by RNase G; additionally, neither 5S rRNA nor M1 RNA was generated from precursors by RNase G cleavage in vitro. Using DNA microarrays containing 4405 Escherichia coli open reading frames (ORFs), we identified mRNAs whose steady-state level was affected by Rne, Rng or the N-terminal catalytic domain of RNase E. Most transcript species affected by RNase E deficiency were also elevated in an rne deletion mutant complemented by Rng. However, approximately 100 mRNAs that accumulated in Rne-deficient cells were decreased by rng-complemention, thus identifying targets whose processing or degradation may be the basis for RNase E essentiality. Remarkably prominent in this group were mRNAs implicated in energy-generating pathways or in the synthesis or degradation of macromolecules. Set of arrays that are part of repeated experiments Biological Replicate
Project description:tRNA-derived fragments (tRFs) have emerged as key players of immunoregulation. Some RNase A superfamily members participate in the shaping of tRFs population. By comparing wild-type and knock-out macrophage cell lines our previous work (Lu L, et al. CMLS, 2022, 79: 209) revealed that RNase 2 can selectively cleave tRNAs. Here, we confirm the in vitro protein cleavage pattern by screening synthetic tRNAs, single-mutant variants and anticodon-loop DNA/RNA hairpins. By sequencing the tRFs products, we identified the cleavage selectivity by recombinant RNase 2 with base specificity at B1 (U/C) and B2 (A) sites, consistent with a previous cellular study. Knowledge of RNase 2 specific tRFs generation might guide new therapeutic approaches for infectious and immune-related diseases.
Project description:Programmed ribosomal frameshifting is the key event during translation of the SARS-CoV-2 RNA genome allowing synthesis of the viral RNA-dependent RNA polymerase and downstream viral proteins. Here we present the cryo-EM structure of the mammalian ribosome in the process of translating viral RNA paused in a conformation primed for frameshifting. We observe that the viral RNA adopts a pseudoknot structure lodged at the mRNA entry channel of the ribosome to generate tension in the mRNA that leads to frameshifting. The nascent viral polyprotein that is being synthesized by the ribosome paused at the frameshifting site forms distinct interactions with the ribosomal polypeptide exit tunnel. We use biochemical experiments to validate our structural observations and to reveal mechanistic and regulatory features that influence the frameshifting efficiency. Finally, a compound previously shown to reduce frameshifting is able to inhibit SARS-CoV-2 replication in infected cells, establishing coronavirus frameshifting as target for antiviral intervention.
Project description:Hcr1/eIF3j is a sub-stoichiometric subunit of eukaryotic initiation factor 3 (eIF3) that can dissociate the post-termination 40S ribosomal subunit from mRNA in vitro. We examined this ribosome recycling role in vivo by ribosome profiling and reporter assays and found that loss of Hcr1 led to reinitiation of translation in 3’UTRs, consistent with a defect in recycling. However, the defect appeared to be in recycling of the 60S subunit, rather than the 40S subunit, because reinitiation did not require an AUG codon and was suppressed by overexpression of the 60S dissociation factor Rli1/ABCE1. Consistent with a 60S recycling role, overexpression of Hcr1 could not compensate for loss of 40S recycling factors Tma64/eIF2D and Tma20/MCT-1. Intriguingly, loss of Hcr1 triggered higher expression of RLI1 via an apparent feedback loop. These findings suggest Hcr1/eIF3j is recruited to ribosomes at stop codons and may coordinate the transition to a new round of translation.