Project description:WT and RNE∆IDR strains were globally profiled for mRNA half-lives using rifampicin treatment followed by RNA-seq. Wild type(WT) was compared to RNE∆IDR strain.
Project description:The ribonucleases (RNases) E and J are essential in Escherichia coli and Bacillus subtilis, respectively. Sinorhizobium meliloti contains both, the rne gene encoding RNase E and the rnj gene encoding RNase J. The transcriptomes of the S. meliloti Rm2011 wild type, and rne and rnj mutants were compared.
Project description:We characterized transcriptomes of a Sinorhizobium meliloti wild type strain (CL150) expressing either Ca. Liberibacter asiaticus ctrA or Sinorhizobium meliloti ctrA
Project description:We characterized transcriptomes of a Sinorhizobium meliloti rpoH1rpoH2 deletion mutant (RFF231; Lang et al. 2018, mSphere 3:e00454-18) expressing either Ca. Liberibacter asiaticus rpoH or Sinorhizobium meliloti rpoH1
Project description:The Alphaproteobacterium Sinorhizobium meliloti lives in soil and is capable of fixing molecular nitrogen in symbiosis with legume plants. In this work, the small proteome of S. meliloti strain 2011 was studied to uncover translation of both annotated and novel small open reading frame (sORF)-encoded proteins (SEPs).
Project description:Investigation of whole genome gene expression level changes in a Sinorhizobium meliloti 1021 rpoH1 rpoH2 double mutant, compared to the wild-type strain. The mutations engineered into this strain render it deficient in symbiotic nitrogen fixation. The mutants analyzed in this study are further described in Mitsui, H, T. Sato, Y. Sato, and K. Minamisawa. 2004. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Gen Genomics 271:416-425.
Project description:We characterized transcriptomes for strains overexpressing each of the Sinorhizobium meliloti ECF sigma factors the via a plasmid-borne, melibiose-inducible promoter plasmid (PmelA; pCAP11: Pinedo et al. 2008 J Bacteriol 190:2947-2956) compared to control strains carrying the empty vector.
Project description:Sinorhizobium meliloti lives as a soil saprophyte, and engages in a nitrogen fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative sigmas, including 11 extracytoplasmic function (ECF) sigmas. We used custom Affymetrix Symbiosis Chips to characterize the global transcriptional response of S. meliloti overexpressing the ECF sigma factor, RpoE2. Our work identifies over 200 genes whose expression is dependent on RpoE2.