Project description:Pathological activation of the PI3K/AKT pathway is among the most frequent defects in human cancer and is also the cause of rare overgrowth disorders. Yet, unlike the related oncogenic RAS/MAPK pathway, there is currently no systematic understanding of the quantitative flow of information within PI3K/AKT signalling and how it is perturbed by disease-causing mutations. Here, we develop scalable, single-cell approaches for systematic studies of signal processing within the PI3K pathway, enabling precise calculations of its information transfer for different growth factors. Using genetically engineered human cell models with allele dose-dependent expression of PIK3CAH1047R, we show that this oncogene is not a simple, constitutive pathway activator but a context-dependent modulator of extracellular signal transfer. PIK3CAH1047R reduces information transfer downstream of IGF1 while selectively enhancing EGF-induced signalling and transcriptional responses. This leads to a gross reduction in signalling specificity, akin to “blurred” signal perception. The associated increase in signalling heterogeneity increases phenotypic diversity in a cervical cancer cell model and in human induced pluripotent stem cells. Collectively, these findings and the accompanying methodological advances lay the foundations for a systematic mapping of the quantitative mechanisms of PI3K/AKT-dependent signal processing and phenotypic control in health and disease.
Project description:Mutant PIK3CA and Her2 genes are oncogenic and their co-existence in breast cancer has been well identified. However, the gene targets and cell signalling pathway regulated by mutant PIK3CA, Her2 and both of PIK3CA and Her2 have not been well studied. We established stable cell models through transfecting mutant PIK3CA, Her2 and both mutant PIK3CA and Her2 into MCF10A cells and performed Affymetrix microarray to identify downstream target genes controlled by either mutant PIK3CA, Her2 or both PIK3CA and Her2.
Project description:Oncogenic PIK3CA mutations activate phosphoinositide 3-kinase (PI3K) and are among the commonest somatic mutations in cancer and mosaic, developmental overgrowth disorders. We recently demonstrated that the ‘hotspot’ variant PIK3CAH1047R exerts striking allele dose-dependent effects on stemness in human induced pluripotent stem cells (iPSCs), and moreover demonstrated multiple oncogenic PIK3CA copies in a substantial subset of human cancers. To identify the molecular mechanism underpinning PIK3CAH1047R allele dose-dependent stemness, we profiled isogenic wild-type, PIK3CAWT/H1047R and PIK3CAH1047R/H1047R iPSCs by high-depth transcriptomics, proteomics and reverse-phase protein arrays (RPPA). PIK3CAH1047R/H1047R iPSCs exhibited altered expression of 5644 genes and 248 proteins, whereas heterozygous hPSCs showed 492 and 54 differentially-expressed genes and proteins, respectively, confirming a nearly deterministic phenotypic effect of homozygosity for PIK3CAH1047R. Pathway and network-based analyses predicted a strong association between self-sustained TGFb/NODAL signaling and the ‘locked’ stemness phenotype induced by homozygosity for PIK3CAH1047R. This stemness gene signature was maintained without exogenous NODAL in PIK3CAH1047R/H1047R iPSCs and was reversed by pharmacological inhibition of TGFb/NODAL signaling but not by PIK3CA-specific inhibition. Analysis of PIK3CA-associated human breast cancers revealed increased expression of the stemness markers NODAL and POU5F1 as a function of disease stage and PIK3CAH1047R allele dosage. Together with emerging realization of the link between NODAL re-expression and aggressive cancer behavior, our data suggest that TGFb/NODAL inhibitors warrant testing in advanced breast tumors with multiple oncogenic PIK3CA copies.
Project description:Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes1-3. Pik3ca and p53 are the two most frequently mutated genes and are associated with different types of human breast cancers4. The cellular origin and the mechanisms leading to Pik3ca-induced tumour heterogeneity remain unknown. Here, we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and its impact on tumour heterogeneity. Surprisingly, oncogenic Pik3ca-H1047R expression at physiological levels5 in basal cells (BCs) using K5CREERT2 induced the formation of luminal ER+PR+ tumours, while its expression in luminal cells (LCs) using K8CREERT2 gave rise to luminal ER+PR+ tumours or basal-like ER-PR- tumours. Concomitant deletion of p53 and expression of Pik3ca-H1047R accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca-H1047R in unipotent BCs gave rise to luminal-like cells, while its expression in unipotent LCs gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that have undergone cell fate transition upon Pik3ca-H1047R expression in unipotent progenitors demonstrate a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures, characteristic of the different cell fate switches that occur upon Pik3ca-H1047R expression in BC and LCs, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca-H1047R activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation. Luminal and basal cells, or tumour cells, from mice in which expression of PIK3CA-H1047R and YFP (and in some conditions loss of p53) was targeted in basal cells using K5CREERT2 or in luminal cells using K8CREERT2 were FACS isolated and RNA was extracted before being hybridized Affymetrix microarrays.
Project description:Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes1-3. Pik3ca and p53 are the two most frequently mutated genes and are associated with different types of human breast cancers4. The cellular origin and the mechanisms leading to Pik3ca-induced tumour heterogeneity remain unknown. Here, we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and its impact on tumour heterogeneity. Surprisingly, oncogenic Pik3ca-H1047R expression at physiological levels5 in basal cells (BCs) using K5CREERT2 induced the formation of luminal ER+PR+ tumours, while its expression in luminal cells (LCs) using K8CREERT2 gave rise to luminal ER+PR+ tumours or basal-like ER-PR- tumours. Concomitant deletion of p53 and expression of Pik3ca-H1047R accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca-H1047R in unipotent BCs gave rise to luminal-like cells, while its expression in unipotent LCs gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that have undergone cell fate transition upon Pik3ca-H1047R expression in unipotent progenitors demonstrate a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures, characteristic of the different cell fate switches that occur upon Pik3ca-H1047R expression in BC and LCs, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca-H1047R activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation.
Project description:Gain-of-function mutation of PIK3CA represents one of the most common oncogenic events in human malignancy, making PI3K an attractive target for cancer therapy. Despite the great promise of targeted therapy, drug resistance is likely to develop, causing treatment failure. To elucidate resistance mechanisms to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing PIK3CA-H1047R. Surprisingly, the majority of mammary tumors induced by PIK3CA-H1047R expression recurred following PIK3CA-H1047R inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including spontaneous focal amplification of c-Met or c-Myc. While amplification of c-Met allowed tumor survival dependent on activation of endogenous PI3K, tumors with amplification of c-Myc become independent of the PI3K pathway. Functional analyses further demonstrated that c-Myc contributed to tumors’ independence of oncogene and resistance to PI3K inhibition. Together, our data suggest that MYC elevation in tumors may be a potential mechanism conferring resistance to current PI3K-targeted therapies. Affymetrix SNP array analysis was performed with Mouse Diversity Genotyping Arrays (Affymetrix) on genomic DNA extracted from frozen biopsies of 6 recurrent mouse mammary tumor samples. Copy number analysis was performed for the mouse mammary tumors using genomic DNA from normal mammary tissue as the reference for copy number inference.
Project description:Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. For each sample, 500 ng of total RNA were used to synthesize biotinylated cRNA with Illumina RNA Amplification Kit (Ambion, Austin, TX). Synthesis was carried out according to the manufacturersâ instructions. From each sample, technical triplicates were produced and 750 ng cRNA were hybridized for 18h to Human HT-12_V3_0_R1 Expression BeadChips (Illumina, San Diego, CA). Hybridized chips were washed and stained with streptavidin-conjugated Cy3 (GE Healthcare, Milan, Italy). BeadChips were dried and scanned with an Illumina Bead Array Reader (Illumina).
Project description:Background: Despite the fact that loss of E-cadherin is causal to the development and progression of invasive lobular breast cancer (ILC), no targeted therapy is available to treat this major breast cancer subtype. This study is aimed at identifying clinically targetable pathways that are aberrantly active downstream of E-cadherin loss in ILC. Methods: Reverse-phase protein array (RPPA) analyses were performed in the context of E-cadherin loss using mouse and human breast cancer cells. A combination of mRNA sequencing, conditioned medium growth assays and CRISPR-Cas9 knock-out experiments were performed to identify and validate activation of oncogenic pathways in ILC. Human ILC samples were employed to validate activation by immunohistochemistry on tissue micro-arrays. Finally, we assessed the effect of pathway inhibition using anoikis resistance and anchorage-dependent growth in vitro. Results: We demonstrate that E-cadherin loss leads to increased activation of FAK and PI3K/AKT signalling. Autocrine activation of growth factor receptor signalling and its downstream PI3K/AKT hub was a direct consequence of E-cadherin loss, independent of activating mutations in either PIK3CA, AKT or PTEN. Analysis of human ILC samples confirmed pathway activity, and pharmacological inhibition of AKT using AZD5363 and MK2206 resulted in robust inhibition of cell growth and survival of ILC cells in anchorage-dependent and independent conditions. Moreover, our results indicate a role for intracellular FAK in the regulation of ILC anoikis resistance. Conclusion: Our data demonstrate that E-cadherin loss evokes additional PI3K/AKT activation independent of oncogenic mutations in this pathway. We propose clinical intervention of PI3K/AKT in ILC based on functional E-cadherin inactivation, irrespective of activating pathway mutations.
Project description:Gain-of-function mutation of PIK3CA represents one of the most common oncogenic events in human malignancy, making PI3K an attractive target for cancer therapy. Despite the great promise of targeted therapy, drug resistance is likely to develop, causing treatment failure. To elucidate resistance mechanisms to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing PIK3CA-H1047R. Surprisingly, the majority of mammary tumors induced by PIK3CA-H1047R expression recurred following PIK3CA-H1047R inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including spontaneous focal amplification of c-Met or c-Myc. While amplification of c-Met allowed tumor survival dependent on activation of endogenous PI3K, tumors with amplification of c-Myc become independent of the PI3K pathway. Functional analyses further demonstrated that c-Myc contributed to tumors’ independence of oncogene and resistance to PI3K inhibition. Together, our data suggest that MYC elevation in tumors may be a potential mechanism conferring resistance to current PI3K-targeted therapies.
Project description:Goals of the study was to compare transcripional and phenotypic response of mouse intestinal organoid cultures to the PIK3CA(H1047R) and CTNNB1(stab) oncogenes.