Project description:Lateral organ development is important for cucumber yield, while the molecular mechanism controlling leaf and floral organ development in cucumber remain elusive. In this report, a novel EMS-mutaginized mutant, round leaf (rl) was distinguished with remarkable round leaf shape, abnormal floral organ and inhibited tendril outgrowth in early development phase. Moreover, the ovule organogenesis disrupted completely in parthenocarpy fruit of rl. MutMap+ analysis revealed that RL encodes a protein kinase PINOID (CsPID, Csa1G537400). A non-synoymous SNP in the second exon of CsPID resulted in an amino-acid substitution from Arg in the wild type to Lys in the rl mutant. CsPID was down-regulated in rl mutant and preferentially expressed in young leaf, and flower buds. IAA quantification showed that rl plants exhibited a lower IAA content than wild type in ovary and blade edge. IAA immunolocalization results confirmed the IAA content alteration in rl plants. Transcriptome profile analysis further suggested IAA biosynthesis, polar transport and signal transduction genes participated in the leaf and floral development process by CsPID. Biochemical analyses showed that CsPID may regulate leaf shape by interacting with CsREV. In conclusion, this study revealed that the extensive genetic architecture of lateral organ organogenesis and development via CsPID regulating auxin polar transport action in cucumber.
Project description:An updated representation of S. meliloti metabolism that was manually-curated and encompasses information from 240 literature sources, which includes transposon-sequencing (Tn-seq) data and Phenotype MicroArray data for wild-type and mutant strains.
Project description:Leafy head is the main product of Chinese cabbage, and also is the primary character to determine its yield and quality. Cloning and characterizing key genes involved in leafy head formation is imperative for varietal improvement in Chinese cabbage. From an EMS mutagenesis population of a heading wild-type ‘FT’ of Chinese cabbage, we identified two allelic non-heading mutants, nhm3-1 and nhm3-2. Genetic analysis showed that the mutant character was controlled by a single recessive gene. MutMap and Kompetitive Allele Specific PCR genotyping results revealed that BraA05g012440.3C encoding an ent-kaurenoic acid oxidase 2 which functions in the GA biosynthetic pathway, was the causal gene for leafy-head formation, and we named it as BrKAO2. Two kinds of non-synonymous mutations in the second exon of BrKAO2 were responsible for the nhm3-1 and nhm3-2 mutant phenotype, respectively. BrKAO2 was expressed at all stages of leaf development, and there was no significant difference between the wild-type ‘FT’ and the mutants nhm3-1 and nhm3-2. The mutant phenotype was restored to the wild-type through the application of exogenous GA3. RNA-Seq was performed on the rosette leaves of wild-type ‘FT’, nhm3-1 and nhm3-1+GA3 plants, and a number of key genes involving in GA biosynthesis, signal transduction and leafy head development were identified. These findings indicated that BrKAO2 is responsible for leafy head formation of nhm3, and a new mechanism of the leafy head formation in Chinese cabbage was proposed.
Project description:To investigate the influence of the AtChz1A/B and ARP6 in H2A.Z incorporation, we analysed genome-wide H2A.Z density in the mutant and wild-type by ChIP-seq. We then performed H2A.Z occupancy analysis using data obtained from ChIP-seq of 3 different plants including mutants and wild-type.
Project description:RNA-seq was performed to examine the differential expressed transcriptomes in γVPE plants during stem development compare to wild type plants.
Project description:RNA-seq was performed to examine the differential expressed transcriptomes in hdt1 plants during stem development compare to wild type plants.
Project description:RNA-seq was performed to examine the differential expressed transcriptomes in cep1 plants during stem development compare to wild type plants.
Project description:RNA-seq was performed to examine the differential expressed transcriptomes in hdt1 plants during stem development compare to wild type plants.