Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance.
Project description:Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.
Project description:The large diversity of viruses that exist in human populations are potentially excreted into sewage collection systems and concentrated in sewage sludge. In the U.S., the primary fate of processed sewage sludge (class B biosolids) is application to agricultural land as a soil amendment. To characterize and understand infectious risks associated with land application, and to describe the diversity of viruses in human populations, shotgun viral metagenomics was applied to 10 sewage sludge samples from 5 wastewater treatment plants throughout the continental U.S, each serving between 100,000 and 1,000,000 people. Nearly 330 million DNA sequences were produced and assembled, and annotation resulted in identifying 43 (26 DNA, 17 RNA) different types of human viruses in sewage sludge. Novel insights include the high abundance of newly emerging viruses (e.g., Coronavirus HKU1, Klassevirus, and Cosavirus) the strong representation of respiratory viruses, and the relatively minor abundance and occurrence of Enteroviruses. Viral metagenome sequence annotations were reproducible and independent PCR-based identification of selected viruses suggests that viral metagenomes were a conservative estimate of the true viral occurrence and diversity. These results represent the most complete description of human virus diversity in any wastewater sample to date, provide engineers and environmental scientists with critical information on important viral agents and routes of infection from exposure to wastewater and sewage sludge, and represent a significant leap forward in understanding the pathogen content of class B biosolids.
Project description:The viral metagenome within an activated sludge microbial assemblage was sampled using culture-dependent and culture-independent methods and compared to the diversity of activated sludge bacterial taxa. A total of 70 unique cultured bacterial isolates, 24 cultured bacteriophages, 829 bacterial metagenomic clones of 16S rRNA genes, and 1,161 viral metagenomic clones were subjected to a phylogenetic analysis.