Project description:Molluscan larval ontogeny is a highly conserved process typical of 3 principal developmental stages. A characteristic unique to each of these stages is shell design, termed prodissoconch I, prodissoconch II and dissoconch. These shells vary in morphology, mineralogy and microstructure. The discrete temporal transitions in shell biomineralization between these larval stages are utilized in this study to investigate transcriptional involvement in several distinct biomineralization events. Scanning electron microscopy and X-ray diffraction analysis of P. maxima larvae and juveniles collected throughout post-embryonic ontogenesis, document the mineralogy and microstructure of each shelled stage as well as establishing a timeline for transitions in biomineralization. P. maxima larval samples most representative of these biomineralization distinctions and transitions were analyzed for differential gene expression on the microarray platform PmaxArray 1.0. A number of transcripts are reported as differentially expressed in correlation to the mineralization events of P. maxima larval ontogeny. Some of those isolated are known shell matrix genes while others are novel, these are discussed in relation to potential shell formation roles. This interdisciplinary investigation has married the shell developments of P. maxima larval ontogeny with corresponding gene expression profiles, furthering the elucidation of shell biomineralization. Keywords: Temporal expression profiling by array
Project description:Molluscan larval ontogeny is a highly conserved process typical of 3 principal developmental stages. A characteristic unique to each of these stages is shell design, termed prodissoconch I, prodissoconch II and dissoconch. These shells vary in morphology, mineralogy and microstructure. The discrete temporal transitions in shell biomineralization between these larval stages are utilized in this study to investigate transcriptional involvement in several distinct biomineralization events. Scanning electron microscopy and X-ray diffraction analysis of P. maxima larvae and juveniles collected throughout post-embryonic ontogenesis, document the mineralogy and microstructure of each shelled stage as well as establishing a timeline for transitions in biomineralization. P. maxima larval samples most representative of these biomineralization distinctions and transitions were analyzed for differential gene expression on the microarray platform PmaxArray 1.0. A number of transcripts are reported as differentially expressed in correlation to the mineralization events of P. maxima larval ontogeny. Some of those isolated are known shell matrix genes while others are novel, these are discussed in relation to potential shell formation roles. This interdisciplinary investigation has married the shell developments of P. maxima larval ontogeny with corresponding gene expression profiles, furthering the elucidation of shell biomineralization. Keywords: Temporal expression profiling by array Microarray is used to examine the temporal differential expression of transcripts from several bivalve larval development stages including 24hrs post fertilization, 3 days, 17 days, 20 days, 23 days, 26 days, 30 days, 35 days, 40 days. Differential expression profiles for transcripts of all the temporal samples was determined based on comparison to a common reference of unfertilized eggs. Each temporal larval sample included in the study has at least 3 replicate hybridizations. Dye flips have been incorporated in the replicates. A total of 46 microarray hybridizations were performed in this investigation for differential expression analysis.
Project description:Ocean acidification, resulting from the dissolution of excess CO2 produced by humans into the ocean, is predicted to impact a broad variety of marine taxa, particularly calcifying animals such as the thecosome (shelled) pteropods. To achieve a better understanding of the mechanisms of pteropod calcification and physiological compensation for high CO2 exposure, we investigated the transcriptomic responses of Clio pyramidata, a cosmopolitan diel migratory thecosome. Individuals were sampled from the Northwest Atlantic in the fall of 2011 and were exposed to ambient (~380 ppm) and end of the century predicted CO2 levels (~800 ppm) and their oxygen consumption was measured. We then used RNA-seq technology to assess transcriptome-wide effects of exposure to elevated CO2. We conducted a de novo assembly of the transcriptome of C. pyramidata, annotated the genes associated with biomineralization, and assessed the differential gene expression patterns. This assembly reveals a number of similarities with other molluscan transcriptomes, and some similar biomineralization genes such as perlucin, calmodulin, regucalcin and SPARC. The results of the differential expression indicate that there is a great deal of natural variability in gene expression and suggest that a few genes putatively associated with biomineralization, particularly perlucin, were up-regulated in the high CO2 treatment. This is the first experiment employing gene expression analysis to investigate the effects of CO2 on a planktonic open-ocean species, providing the first insights into the effects of acidification on these important planktonic calcifiers and suggesting interesting gene families which may prove useful in further ecophysiological, biomaterials and phylogenetic studies.
Project description:Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many parts of the biomineralization process and its evolutionary origin remain a mystery. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms underlie its production of remarkable shells and pearls is not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins (VWAP), chondroitin sulfotransferases and regulatory elements.Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre matrices suggests that elements of chitin- and collagen-based matrices are deeply rooted and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems.
Project description:Background: The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods: The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results: We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions: The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly.
Project description:The appearance of hard mineralized exoskeletons is a critical leap for animal evolution and partially lead to the explosion of diverse animals during the Cambrian, for example, molluscs. A majority of molluscs have mineralized shells to protect themselves. Despite numerous studies that have studied the remarkable mechanical properties of shells, the origin of shell formation is still elusive. Hence, this study investigated the overlooked shell proteome of chitons, which belong to polyplacophoran, Aculifera of Mollusca. By comparing the shell proteome to well-studied Conchifera groups, we inferred possible ancestral biomineralization toolkits of stem-group Mollusca. Taking advantage of the recently sequenced chiton mantle transcriptome and genome, eight core biomineralization proteins were identified by proteomics. Surprisingly, in contrast to previous thought that shell formation is convergently evolved, two important shell matrix proteins, Nacrein-like and Pif-like proteins were found to be conserved among Aculifera and Conchifera groups. Our findings identify a missed link of mineralized shell evolution in Mollusca and pose a hypothesis that stem-group molluscs have already evolved core biomineralization toolkits, which likely facilitate the formation of mineralized shells for protection that partially leads to their explosion.
Project description:The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are shared between the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral is collagen-rich (10 collagen-like proteins). Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. Their inferred regulatory function suggests that the difference between the two biominerals rather relies on the modeling of the matrix network than on specific structural components. At least one OM component appears to have been horizontally transferred from prokaryotes early during Octocorallia evolution. Our results support the view that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
2021-09-09 | PXD020332 | Pride
Project description:The Molluscan Shell Secretome: Unlocking Calcium Pathways in a Changing World
Project description:Randall’s plaques (RP) are well established as precursor lesions of idiopathic calcium oxalate (CaOx) stones, and the process of biomineralization driven by osteogenic-like cells has been highlighted in RP formation, but the mechanism is poorly understood. Given the potential role of osteogenic-like renal interstitial fibroblasts in biomineralization, the isolated primary human renal interstitial fibroblasts (hRIFs) were either induced with a widely used osteogenic medium or cultured in normal medium for 7 days, and a transcriptomic analysis of LncRNA and mRNA was performed to study molecular mechanisms underlying the osteogenic differentiation of human renal interstitial fibroblasts.