Project description:BackgroundTo conduct phylogeographic or population genetic studies, an adequate number of DNA markers for the focal species are required. Due to severe unavailability of genotype markers of any kind for the species Eurasian minnow (Phoxinus phoxinus L.) and rudd (Scardinius erythrophthalmus L.), we set out to attempt cross-amplification of a set of microsatellite loci from related species.FindingsWe tested 36 cyprinid microsatellite loci for cross-species amplification in minnow and rudd. Fifteen species-locus combinations produced amplifications in minnow, seven being polymorphic, while 18 combinations amplified in rudd, nine of these being polymorphic.ConclusionsThe positive cross-species amplifications present potential contributions to the establishment of genetic marker sets for population genetics studies of the two focal species.
Project description:As a widely distributed species along the Irtysh River, Phoxinus phoxinus ujmonensis (Kaschtschenko, 1899) was used as a model to investigate genetic diversity and population structure as well as the influence of environmental factors on population genetics. In this study, we specifically developed 12 polymorphic microsatellite loci. The analysis of microsatellite and mtDNA markers revealed a high and a moderate genetic diversity across seven populations, respectively. Moderate differentiation was also detected among several populations, indicating the impact of habitat fragmentation and divergence. The absence of isolation by distance implied an extensive gene flow, while the presence of isolation by adaptation implied that these populations might be in the process of adapting to divergent habitats. Correlation analysis showed that abiotic factors like dissolved oxygen, pH, total dissolved solids, and conductivity in water as well as biotic factors like plankton diversity and fish species diversity had impact on genetic diversity and divergence in P. phoxinus ujmonensis populations. The results of this study will provide an insight into the effect of environmental factors on genetic diversity and contribute to the study of population genetics of sympatric species.