Project description:BackgroundTo conduct phylogeographic or population genetic studies, an adequate number of DNA markers for the focal species are required. Due to severe unavailability of genotype markers of any kind for the species Eurasian minnow (Phoxinus phoxinus L.) and rudd (Scardinius erythrophthalmus L.), we set out to attempt cross-amplification of a set of microsatellite loci from related species.FindingsWe tested 36 cyprinid microsatellite loci for cross-species amplification in minnow and rudd. Fifteen species-locus combinations produced amplifications in minnow, seven being polymorphic, while 18 combinations amplified in rudd, nine of these being polymorphic.ConclusionsThe positive cross-species amplifications present potential contributions to the establishment of genetic marker sets for population genetics studies of the two focal species.
Project description:As a widely distributed species along the Irtysh River, Phoxinus phoxinus ujmonensis (Kaschtschenko, 1899) was used as a model to investigate genetic diversity and population structure as well as the influence of environmental factors on population genetics. In this study, we specifically developed 12 polymorphic microsatellite loci. The analysis of microsatellite and mtDNA markers revealed a high and a moderate genetic diversity across seven populations, respectively. Moderate differentiation was also detected among several populations, indicating the impact of habitat fragmentation and divergence. The absence of isolation by distance implied an extensive gene flow, while the presence of isolation by adaptation implied that these populations might be in the process of adapting to divergent habitats. Correlation analysis showed that abiotic factors like dissolved oxygen, pH, total dissolved solids, and conductivity in water as well as biotic factors like plankton diversity and fish species diversity had impact on genetic diversity and divergence in P. phoxinus ujmonensis populations. The results of this study will provide an insight into the effect of environmental factors on genetic diversity and contribute to the study of population genetics of sympatric species.
Project description:Phoxinus phoxinus is a small Leuciscinae species predominantly found in cool and well-oxygenated streams throughout a wide area encompassing Europe, Siberia and East Asia. It is believed that the populations in Korea hold important clues to how the species has been distributed south along the Eurasian continent to the Korean Peninsula. We characterized the complete mitochondrial genomes of two individual fin-clip samples collected from the two Korean river systems. The whole sequences were 17,665 and 18,220?bp, respectively, and included 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The genome size difference was due to the considerably different sizes of the control region. The overall genome structures were identical to those observed in other Leuciscinae species.
Project description:Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1'665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context. Using next-generation sequencing, the present manuscript identifies the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of a cyprinid fish: the European minnow (Phoxinus phoxinus). We highlight that the relative importance of neutral versus adaptive processes in shaping immune competence may differ between duplicates as a consequence of alternative selective regimes or different genomic contexts.
Project description:Functional traits can covary to form "functional syndromes." Describing and understanding functional syndromes is an important prerequisite for predicting the effects of organisms on ecosystem functioning. At the intraspecific level, functional syndromes have recently been described, but very little is known about their variability among populations and-if they vary-what the ecological and evolutionary drivers of this variation are. Here, we quantified and compared the variability in four functional traits (body mass, metabolic rate, excretion rate, and boldness), their covariations and the subsequent syndromes among thirteen populations of a common freshwater fish (the European minnow, Phoxinus phoxinus). We then tested whether functional traits and their covariations, as well as the subsequent syndromes, were underpinned by the phylogenetic relatedness among populations (historical effects) or the local environment (i.e., temperature and predation pressure), and whether adaptive (selection or plasticity) or nonadaptive (genetic drift) processes sustained among-population variability. We found substantial among-population variability in functional traits and trait covariations, and in the emerging syndromes. We further found that adaptive mechanisms (plasticity and/or selection) related to water temperature and predation pressure modulated the covariation between body mass and metabolic rate. Other trait covariations were more likely driven by genetic drift, suggesting that nonadaptive processes can also lead to substantial differences in trait covariations among populations. Overall, we concluded that functional syndromes are population-specific, and that both adaptive and nonadaptive processes are shaping functional traits. Given the pivotal role of functional traits, differences in functional syndromes within species provide interesting perspectives regarding the role of intraspecific diversity for ecosystem functioning.