Project description:Bacteria have evolved different mechanisms to catabolize carbon sources from a mixture of nutrients. They first consume their preferred carbon source, before others are used. Regulatory mechanisms adapt the metabolism accordingly to maximize growth and to outcompete other organisms. The human pathogen Campylobacter jejuni is an asaccharolytic Gram-negative bacterium that catabolizes amino acids and organic acids for growth. It prefers serine and aspartate as carbon sources, however it lacks all regulators known to be involved in regulating carbon source utilization in other organisms. In which manner C. jejuni adapts its metabolism towards the presence or absence of preferred carbon sources is unknown. In this study, we show with transcriptomic analysis and enzyme assays how C. jejuni adapts its metabolism in response to its preferred carbon source serine. In the presence of serine as well as lactate and pyruvate C. jejuni represses the utilization of other carbon sources, by repressing the expression of a number of central metabolic enzymes. The regulatory proteins RacR, Cj1000 and CsrA play a role in the regulation of these metabolic enzymes. This metabolism dependent transcriptional repression correlates with an accumulation of intracellular succinate. Hence, we propose a demand-based catabolite repression mechanism in C. jejuni, which depends on the intracellular succinate level.
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.
Project description:To study mixotrophy, it is desirable to have an organism capable of growth in the presence and absence of both organic and inorganic carbon sources, as well as organic and inorganic energy sources. Metallosphaera sedula is an extremely thermoacidophilic archaeon which has been shown to grow in the presence of inorganic carbon and energy source supplements (autotrophy), organic carbon and energy source supplements (heterotrophy), and in the presence of organic carbon and inorganic energy source supplements. The recent elucidation of M. sedula’s inorganic carbon fixation cycle and its genome sequence further facilitate its use in mixotrophic studies. In this study, we grow M. sedula heterotrophically in the presence of organic carbon and energy sources (0.1% tryptone), autotrophically in the presence of inorganic carbon and energy sources (H2 + CO2), and “mixotrophically” in the presence of both organic and inorganic carbon and energy sources (0.1% tryptone + H2 + CO2 ) to characterize the nature of mixotrophy exhibited.
Project description:Cryptomonas sp. was grown under phototrophic conditions, glucose supplemented phototrophic conditions and 3 different dissolved organic carbon (DOC) concentrations: 1.5, 30 and 90 mg C l−1. The objective was to study the adaptations that make Cryptomonas sp. thrive under high DOC conditions.
Project description:BackgroundAutophagy is a crucial process of cellular self-destruction and component reutilization that can affect the accumulation of total fatty acids (TFAs) and carotenoids in microalgae. The regulatory effects of autophagy process in a docosahexaenoic acid (DHA) and carotenoids simultaneously producing microalga, Crypthecodinium sp. SUN, has not been studied. Thus, the autophagy inhibitor (3-methyladenine (MA)) and activator (rapamycin) were used to regulate autophagy in Crypthecodinium sp. SUN.ResultsThe inhibition of autophagy by 3-MA was verified by transmission electron microscopy, with fewer autophagy vacuoles observed. Besides, 3-MA reduced the glucose absorption and intracellular acetyl-CoA level, which resulting in the decrease of TFA and DHA levels by 15.83 and 26.73% respectively; Surprisingly, 3-MA increased intracellular reactive oxygen species level but decreased the carotenoids level. Comparative transcriptome analysis showed that the downregulation of the glycolysis, pentose phosphate pathway and tricarboxylic acid cycle may underlie the decrease of acetyl-CoA, NADPH and ATP supply for fatty acid biosynthesis; the downregulation of PSY and HMGCR may underlie the decreased carotenoids level. In addition, the class I PI3K-AKT signaling pathway may be crucial for the regulation of carbon and energy metabolism. At last, rapamycin was used to activate autophagy, which significantly enhanced the cell growth and TFA level and eventually resulted in 1.70-fold increase in DHA content.ConclusionsOur findings indicate the mechanisms of autophagy in Crypthecodinium sp. SUN and highlight a way to manipulate cell metabolism by regulating autophagy. Overall, this study provides valuable insights to guide further research on autophagy-regulated TFA and carotenoids accumulation in Crypthecodinium sp. SUN.
Project description:Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Besides being able to grow photoautotrophically, some cyanobacteria are also capable to grow photoheterotrophically, where they use reduced organic compounds as carbon source, or even completely heterotrophically by using reduced organic compounds as carbon and energy source. The well characterized cyanobacterium Synechocystis sp. PCC 6803 can grow in darkness under light-activated heterotrophic growth (LAHG) conditions by using glucose as carbon and energy source. In the present work, we combined pre-fractioning of Synechocystis cellular membranes with a global proteome and lipidome analysis, to shift the analytical focus towards the rearrangement of the internal thylakoid membrane system observed in Synechocystis cells under LAHG conditions.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH-controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased pH above a threshold (~ 6.2) lead to carbon loss through increased decomposition following alleviation of acid-retardation of microbial growth. However, loss of carbon with intensification in near neutral-pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to tradeoffs with stress alleviation and resource acquisition. Thus, less intensive management practices in near neutral-pH soils have more potential for carbon storage through increased microbial growth efficiency; whereas, in acidic soils microbial growth is a bigger constraint on decomposition rates.