Project description:We performed immunoprecipitation analysis with leaves from 35S::NusG:MYC transgenic lines throung the MYCantibody, and the product was subjected to LC-MS analysis.
Project description:We performed chloroplast ChIP-seq (cpChIP-seq) to identify the possible DNA-binding sites of mTERF5 in Arabidopsis thaliana. To this end, we generated transgenic Arabidopsis plants expressing mTERF5 carrying an HA tag under the control of the CaMV 35S promoter. Then, We used the polyclonal antibody (abcam, ab9110, lot GR304617-8 ) against HA tag which conjugated to ChIP-Grade protein A/G agarose (Thermo scientific, 26161, lot QJ223903) to perform cpChIP assay. The obtained chromatin immunoprecipitated DNA of chloroplasts were used to build DNA libaries for high-throughput sequencing. Finally, we showed that three potenssial DNA regions across the chloroplast genome compared to the control group were enriched by mTERF5.
Project description:Genome-wide target genes of PPD2 were identified through ChIP-seq on Arabidopsis cell cultures. For ChIP-seq, PPD2 was fused to the GSyellow TAP tag and expressed from the 35S promoter. The p35S:PPD2-GSyellow construct was transformed into Arabidopsis thaliana PSB-D cell culture. ChIP was performed using anti-GFP antibody (abcam290).
Project description:DNA methylation is an important epigenetic modification involved in many biological processes, and active DNA demethylation plays critical roles in regulating expression of genes and anti-silencing of transgenes. In this study, we isolated mutations in one arabidopsis gene, ROS5, which causes the silencing of transgenic 35S-NPTII because of DNA hypermethylation, but no effect on transgenic RD29A-LUC. ROS5 encodes an atypical small heat shock protein. ROS5 can physically interact with IDM1 and is required for preventing DNA hypermethylation of some endogenous genes that are also regualated by IDM1 and ROS1. We propose that ROS5 may regulate active DNA demethylation by interacting with IDM1, thereby creating a friendly chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.
Project description:To identify the genes regulated by Arabidopsis ERF19. 35S::ERF19 transgenic Arabidopsis was created, them we employ whole genome microarray expression profiling as a discovery platform to identify genes with the potential to regulae by ERF19. The RNA was isopated from the whole flower of control and 35S::ERF19 transgenic Arabidopsis.
Project description:We performed transcriptome and ribosome immunoprecipitation studies of transgenic Arabidopsis (Arabidopsis thaliana) Columbia seeds expressing a His6FLAG-tagged version of the ribosomal large subunit protein L18B (35S:HF-RPL18B)