Project description:We describe a more detailed survey undertaken to detect candidate CNVs in a panel of 20 Asian cultivated rice and the genome-wide characteristics of CNVs in subspecies and groups. These resources allowed us to analyze genetic structure as indicated by CNVs, to implicate the biological roles of CNVs, and to identify candidate CNVs that are likely to occur independently in groups and contribute to differences between the subspecies.
Project description:We describe a more detailed survey undertaken to detect candidate CNVs in a panel of 20 Asian cultivated rice and the genome-wide characteristics of CNVs in subspecies and groups. These resources allowed us to analyze genetic structure as indicated by CNVs, to implicate the biological roles of CNVs, and to identify candidate CNVs that are likely to occur independently in groups and contribute to differences between the subspecies. a panel of 20 accessions
Project description:Changes in patterns of gene expression are believed to be responsible for the phenotypic differences within and between species. Although the evolutionary significance of functional mutations has been emphasized in rice domestication, little is known about the differences in gene regulation underlying the phenotypic diversification among rice varieties. MicroRNAs (miRNAs) are small regulatory RNAs that play crucial roles in regulating post-transcriptional gene expression. Here, we studied the variation in the expression of both miRNAs and mRNA transcripts in three indica and three japonica rice varieties using RNA sequencing (RNA-seq) to examine the miRNA regulatory effect on target gene expression in rice. In total, 71.0%, 9.2%, and 1.5% of the expressed mature miRNAs showed tissue, subspecies, and tissue-subspecies interaction-biased expression. Most of these differentially expressed miRNAs are evolutionarily weakly conserved. To examine the miRNA regulatory effect on global gene expression under endogenous conditions, we performed pair-wise correlation coefficient analyses on the expression levels of 240 mature miRNAs and 1178 messenger RNAs (mRNAs) both globally and for each specific miRNA-mRNA pair. We found that the deeply conserved miRNAs can significantly decrease the target mRNA abundance. In addition, a total of 109 miRNA-mRNA pairs were identified as significantly correlated pairs (Adjusted p<0.01). Of those, 41 pairs showed positive correlations, while 68 pairs showed negative correlations. Functional analysis elucidated that these mRNAs belonged to different biological pathways that could regulate the stress response, metabolic processes, and rice development. In conclusion, the joint interrogation of miRNA and mRNA expression profiles in this study proved useful for the study of the role of miRNA expression and regulation in the plant transcriptome.
Project description:In this study, we used RNA-Seq to understand the mechanisms of Cd toxicity, cellular detoxification and protection pathways in response to Cd in rice roots. To gain additional insight into the rice transcriptomic response to environmental Cd stress, 15-day-old rice seedlings were treated with 10 or 100 μM solutions of Cd2+, or without Cd (control), for 24 h, at which point root samples were harvested and labeled as Cd+, Cd++, and control, respectively. These samples were used for 101 bp paired-end (PE) deep sequencing on an Illumina HiSeq 2500 platform.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:A biological phenomenon in which hybrids exhibit superior phenotypes from its parental inbred lines known as heterosis, has been widely exploited in plant breeding and extensively used in crop improvement. Hybrid rice has immense potential to increase yield over other rice varieties and hence is crucial in meeting increasing demand of rice globally. Moreover, the molecular basis of heterosis is still not fully understood and hence it becomes imperative to unravel its genetic and molecular basis. In this context, RNA sequencing technology (RNA-Seq) was employed to sequence transcriptomes of two rice hybrids, Ajay and Rajalaxmi, their parental lines, CRMS31A (sterile line, based on WA-CMS) and CRMS32A (sterile line based on Kalinga-CMS) respectively along with the common restorer line of both hybrids, IR-42266-29-3R at two critical rice developmental stages viz., panicle initiation (PI) and grain filling (GF). Identification of differentially expressed genes (DEGs) at PI and GF stages will further pave the way for understanding heterosis. In addition, such kind of study would help in better understanding of heterosis mechanism and genes up-regulated and down-regulated during the critical stages of rice development for higher yield.