Project description:As a primary target of SARS-CoV-2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of COVID-19-related pulmonary injury. Here, we generated a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins were quantified across 71 post-mortem specimens. We identified a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels comparing with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data revealed the region-specific enrichment of functional markers in bronchiole mucus plug, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detected increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a unique perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.
Project description:The lung contains numerous specialized cell-types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here, we report 83 cell states, several spatially-resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated scRNA-Seq and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programs, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell-types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Project description:The lung contains numerous specialized cell-types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here, we report 83 cell states, several spatially-resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated scRNA-Seq and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programs, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell-types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Project description:Applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells.
Project description:Adult stem cell identity, plasticity, and homeostasis are precisely orchestrated by lineage-restricted epigenetic and transcriptional regulatory networks. Here, by integrating super-enhancer and chromatin accessibility landscapes, we delineate core transcription regulatory circuitries (CRCs) of limbal stem/progenitor cells (LSCs) and find that RUNX1 and SMAD3 are required for maintenance of the corneal epithelial identity and homeostasis. RUNX1 or SMAD3 depletion inhibits PAX6 and induces LSCs to differentiate into epidermal-like type. RUNX1, PAX6 and SMAD3 (RPS) interact with each other and synergistically establish a CRC to govern the lineage-specific cis-regulatory atlas. Moreover, RUNX1 shapes LSC chromatin architecture via modulating H3K27ac deposition. Disturbance of RPS cooperation results in cell identity switching and dysfunction of the corneal epithelium, which is strongly linked to various human corneal diseases. Our work highlights CRC TF cooperativity for the establishment of stem cell identity and lineage commitment, and provides comprehensive regulatory principles for human stratified epithelial homeostasis and pathogenesis.
Project description:Applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells.
Project description:The translation of mRNA into proteins in multicellular organisms needs to be carefully tuned to changing proteome demands in development and differentiation, and defects in translation often have a disproportionate impact in distinct cell types. Here we used inducible CRISPR interference screens to compare the essentiality of genes with functions in mRNA translation in human induced pluripotent stem cells (hiPSC) and hiPSC-derived neural and cardiac cells. We find that core components of the mRNA translation machinery are broadly essential, but the consequences of perturbing translation-coupled quality control factors are highly cell type dependent. Human stem cells critically depend on pathways that detect and rescue slow or stalled ribosomes, and on the E3 ligase ZNF598 to resolve a novel type of ribosome collisions at translation start sites on endogenous mRNAs with highly efficient initiation. Our findings underscore the importance of cell identity for deciphering the molecular mechanisms of translational control in metazoans.
Project description:The translation of mRNA into proteins in multicellular organisms needs to be carefully tuned to changing proteome demands in development and differentiation, and defects in translation often have a disproportionate impact in distinct cell types. Here we used inducible CRISPR interference screens to compare the essentiality of genes with functions in mRNA translation in human induced pluripotent stem cells (hiPSC) and hiPSC-derived neural and cardiac cells. We find that core components of the mRNA translation machinery are broadly essential, but the consequences of perturbing translation-coupled quality control factors are highly cell type dependent. Human stem cells critically depend on pathways that detect and rescue slow or stalled ribosomes, and on the E3 ligase ZNF598 to resolve a novel type of ribosome collisions at translation start sites on endogenous mRNAs with highly efficient initiation. Our findings underscore the importance of cell identity for deciphering the molecular mechanisms of translational control in metazoans.
Project description:Deciphering the connectome, transcriptome and spatial-omics integrated multi-modal brain atlas and the underlying organization principles remains a great challenge. We developed a cost-effective Single-cell Projectome-transcriptome In situ Deciphering Sequencing (SPIDER-Seq) technique by combining viral barcoding tracing with single-cell sequencing and spatial-omics. This empowers us to delineate a comprehensive integrated single-cell spatial molecular, cellular and projectomic atlas of mouse prefrontal cortex (PFC). The projectomic and transcriptomic cell clusters display distinct modular organization principles, but are coordinately configured in the PFC. The projection neurons gradiently occupied different territories in the PFC aligning with their wiring patterns. Importantly, they show higher co-projection probability to the downstream nuclei with reciprocal circuit connections. Moreover, we integrated projectomic atlas with their distinct spectrum of neurotransmitter/neuropeptide and the receptors-related gene profiles and depicted PFC neural signal transmission network. By which, we uncovered potential mechanisms underlying the complexity and specificity of neural transmission. Finally, we predicted neuron projections with high accuracy by combining gene profiles and spatial information via machine learning. This study facilitates our understanding of brain multi-modal network and neural computation.