Project description:Metabolic gene expression analysis to explore ICG-001’s impact on metabolic changes associated with glioma differentiation after disrupting the CBP/β-Catenin interaction by treating patient-derived GBM cell lines PBT147 and PBT030 with ICG-001 (0, 5, or 10 µM) for 24 and 72 h using Nanostring nCounter platform
Project description:Metabolic gene expression analysis to explore ICG-001’s impact on metabolic changes associated with glioma differentiation after disrupting the CBP/β-Catenin interaction by treating patient-derived GBM cell lines PBT147 and PBT030 with ICG-001 (0, 5, or 10 µM) for 24 and 72 h using Nanostring nCounter platform
Project description:Analysis of the effects of targeting NOS2 at the gene expression level. Our studies demonstrated a role for NOS2 in glioma biology through the maintenance of the glioma stem cell phenotype. Microarray results provide novel targets of NOS2 and suggest mechanisms through which NOS2 contributes to glioma stem cell biology. Glioma stem cells isolated from two different human glioma xenografts were infected with a non-targeting control shRNA or two different shRNAs directed against NOS2 (each treatment in each tumor performed in technical duplicates).
Project description:Analysis of the effects of targeting NOS2 at the gene expression level. Our studies demonstrated a role for NOS2 in glioma biology through the maintenance of the glioma stem cell phenotype. Microarray results provide novel targets of NOS2 and suggest mechanisms through which NOS2 contributes to glioma stem cell biology.
Project description:Neuronal activity promotes high-grade glioma (HGG) growth. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule and glioma mitogen neuroligin-3 (Nlgn3), but the therapeutic potential of targeting Nlgn3 in glioma remains to be defined. We demonstrate a striking dependence of HGG growth on microenvironmental Nlgn3 and determine a targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric glioblastoma, diffuse intrinsic pontine glioma and adult glioblastoma fail to grow in Nlgn3 knockout mice. Glioma exposure to Nlgn3 results in numerous signaling consequences, including early focal adhesion kinase activation upstream of PI3K-mTOR. Nlgn3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. Administration of ADAM10 inhibitors robustly blocks HGG xenograft growth. This work defines the therapeutic potential of and a promising strategy for targeting Nlgn3 secretion in the glioma microenvironment, which could prove transformative for treatment of HGG.
Project description:A hallmark feature of glioblastoma (GBM) cells is its strong self-renewal potential and immature differentiation state -- stem cell-like properties which may contribute to the plasticity and intense therapeutic resistance of GBM. The molecular basis of the immature differentiation profile remains an area of active investigation. Here, integrated genomic and biological analyses identified PLAGL2 as a potent proto-oncogene targeted for amplification/gain in malignant gliomas as well as in colorectal cancers. High level of PLAGL2 expression strongly suppresses neural stem cell (NSC) and glioma-initiating cell (GIC) differentiation while promoting their proliferation and self-renewal capacity under differentiation induction conditions. On the mechanistic level, the PLAGL2 transcriptome analysis revealed that these differentiation suppressive activities are attributable in part to PLAGL2 modulation of Wnt/beta-catenin signaling via up-regulation of Wnt6 ligand as well as Fzd9 and Fzd2 receptor expression. Correspondingly, inhibition of Wnt signaling in PLAGL2-expressing NSC partially restores their differentiation capacity. The identification of PLAGL2 as a glioma oncogene highlights the importance of a growing class of cancer genes functioning to impart stem cell-like characteristics on malignant cells. p53-null mouse NSCs are infected with retrovirus expressing either control vector or PlagL2. Total RNA were collected upon differentiation in 1% FBS for 24 hr. 3 replicates each.
Project description:<h4><strong>BACKGROUND: </strong>Neuroblastoma accounts for 7% of paediatric malignancies but is responsible for 15% of all childhood cancer deaths. Despite rigorous treatment involving chemotherapy, surgery, radiotherapy and immunotherapy, the 5-year overall survival rate of high-risk disease remains < 40%, highlighting the need for improved therapy. Since neuroblastoma cells exhibit aberrant metabolism, we determined whether their sensitivity to radiotherapy could be enhanced by drugs affecting cancer cell metabolism.</h4><h4><strong>METHODS:</strong> Using a panel of neuroblastoma and glioma cells, we determined the radiosensitising effects of inhibitors of glycolysis (2-DG) and mitochondrial function (metformin). Mechanisms underlying radiosensitisation were determined by metabolomic and bioenergetic profiling, flow cytometry and live cell imaging and by evaluating different treatment schedules.</h4><h4><strong>RESULTS:</strong> The radiosensitising effects of 2-DG were greatly enhanced by combination with the antidiabetic biguanide, metformin. Metabolomic analysis and cellular bioenergetic profiling revealed this combination to elicit severe disruption of key glycolytic and mitochondrial metabolites, causing significant reductions in ATP generation and enhancing radiosensitivity. Combination treatment induced G<sub>2</sub>/M arrest that persisted for at least 24 h post-irradiation, promoting apoptotic cell death in a large proportion of cells.</h4><h4><strong>CONCLUSION: </strong>Our findings demonstrate that the radiosensitising effect of 2-DG was significantly enhanced by its combination with metformin. This clearly demonstrates that dual metabolic targeting has potential to improve clinical outcomes in children with high-risk neuroblastoma by overcoming radioresistance.</h4>