Project description:Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) strains and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence data. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB (HR-MTB), 7 were resistant only to one antibiotic (3 were resistant only to ethambutol and 3 isolate to streptomycin while one isolate showed resistance to fluoroquinolones), 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB (pre-XDR). This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of TB infection.
Project description:In our rabbit model of pulmonary tuberculosis, infection with Mtb HN878, a hyper-virulent W-Beijing strain, results in progressive cavitary disease. However, infection of rabbit lungs with Mtb CDC1551, a hyper-immunogenic strain is effectively controlled overtime, establishing latent Mtb infection. Using these two Mtb strains, we tested the hypothesis that the initial host response in the lungs within hours of infection determines later outcome. The microarray experiments was performed to identify gene expression changes in the Mtb-HN878 or CDC1551- infected rabbit lungs at 3 hours post infection, compared to uninfected naïve rabbit lungs.
Project description:Genome wide differential association of H3K4me3 in Human macrophages after infection with both virulent and avirulent strains of Mtb
Project description:With the widespread of drug-resistant Mycobacterium tuberculosis (Mtb), anti-TB drugs with novel structures and targets are urgently needed to prevent the prevalence of drug-resistant strains. For the past few decades, many Mtb CYPs been structurally and functionally characterized, and some of them were proved to be potential drug targets. CYP138 belongs to the Mtb CYPs whose structures and functions are still unclear. In our study, to discover differentially expressed proteins, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through 6-plex TMT-labeling-based quantitative proteomic approach.
Project description:In our rabbit model of pulmonary tuberculosis, infection with Mtb HN878, a hyper-virulent W-Beijing strain, results in progressive cavitary disease. However, infection of rabbit lungs with Mtb CDC1551, a hyper-immunogenic strain is effectively controlled overtime, establishing latent Mtb infection. Using these two Mtb strains, we tested the hypothesis that the initial host response in the lungs within hours of infection determines later outcome. The microarray experiments was performed to identify gene expression changes in the Mtb-HN878 or CDC1551- infected rabbit lungs at 3 hours post infection, compared to uninfected naïve rabbit lungs. New Zealand White rabbits were infected with Mtb HN878 or CDC1551 at ~3.5log10. At 3 hours post infection, lung tissue from Mtb-infected and uninfected rabbits were isolated and used for total RNA extraction. Total rabbit lung RNA was used for microarray analysis to determine infection induced changes in host gene expression.
Project description:A cell-based phenotypic screen for inhibitors of biofilm formation in Mycobacterium tuberculosis (Mtb) identified the small molecule TCA1, which has bactericidal activity against both drug susceptible and drug resistant Mtb, and synergizes with rifampicin (RIF) or isoniazid (INH) in sterilization of Mtb in vitro. In addition, TCA1 has bactericidal activity against non-replicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models, both alone and in combination with INH or RIF. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb dormancy and drug tolerance. Mutagenesis and affinity-based methods identified DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as the targets responsible for TCA1’s activity. These in vitro and in vivo results indicate that TCA1functions by a novel mechanism and suggest that it may be the first product of a promising new approach for the development of anti-tuberculosis drugs.
Project description:A cell-based phenotypic screen for inhibitors of biofilm formation in Mycobacterium tuberculosis (Mtb) identified the small molecule TCA1, which has bactericidal activity against both drug susceptible and drug resistant Mtb, and synergizes with rifampicin (RIF) or isoniazid (INH) in sterilization of Mtb in vitro. In addition, TCA1 has bactericidal activity against non-replicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models, both alone and in combination with INH or RIF. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb dormancy and drug tolerance. Mutagenesis and affinity-based methods identified DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as the targets responsible for TCA1M-bM-^@M-^Ys activity. These in vitro and in vivo results indicate that TCA1functions by a novel mechanism and suggest that it may be the first product of a promising new approach for the development of anti-tuberculosis drugs. Transcriptional profile of TCA1-treated cells relative to DMSO-treated control. Three biological replicates, third is a dye flip.
Project description:Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq). Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of 9 modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species.
Project description:Latent tuberculosis infection (LTBI) relies on a homeostasis of macrophages and Mycobacterium tuberculosis (Mtb). The small heat shock protein, Mtb Hsp16.3 (also known as latency-associated antigen), plays an important role in Mtb persistence within macrophages. However, the mechanism of LTBI remains elusive. The aim of this study was to delineate LTBI-related miRNA expression in U937 macrophages expressing Mtb Hsp16.3 protein. This study intends to explore the potential function of miRNAs in the interaction of macrophages with Mtb Hsp16.3 and provide insights for investigating the role of macrophage homeostasis in LTBI.