Project description:Regulatory Mechanisms of Atrial Remodeling of Mitral Regurgitation Pigs This study enrolled 6 pigs (age: 18 months) and divided into three groups: mitral regurgitation pigs (MR) (n = 2; 2 males sacrificed 12 months after surgery), MR pigs treated with valsartan (MRV) (n = 2; 2 males age-matched to MR sacrificed 12 months after surgery), and normal control pigs (NC) (n = 2; 2 males age-matched to MR pigs). Valsartan (3.43 mg/kg/day), a type I angiotensin II receptor blocker, was administered from one week before surgery and then daily after surgery in the MRV group. We sought to systemically elucidate critical differences in the alteration of RNA expression pattern between the atrial myocardium of pigs with and without MR, and between the atrial myocardium of MR pigs with and without valsartan using high-density oligonucleotide microarrays and functional network enrichment analysis.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig
Project description:Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, chromatin modifications correlate with cis - and trans -regulation. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation. Examination of gene expression in 5 tetraploid Arabidopsis using mRNA-seq
Project description:Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, chromatin modifications correlate with cis - and trans -regulation. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig 47 samples
Project description:Variation in gene expression arises from cis- and trans-regulatory mutations, which contribute differentially to expression divergence. Here, we compare the impacts on gene expression and fitness for cis- and trans-regulatory mutations affecting expression of the TDH3 gene in Saccharomyces cerevisiae. We use the effects of cis-regulatory mutations to isolate effects of trans-regulatory mutations caused by impacts on TDH3 from pleiotropic impacts on other genes, providing a rare distribution of pleiotropic effects. These pleiotropic effects were often, but not always, deleterious. For cis- and trans-regulatory mutations with similar effects on TDH3, trans-regulatory mutations had more widespread effects on gene expression, with distinct impacts on expression of genes downstream of TDH3. These differences between cis-and trans-regulatory mutations help explain their different contributions to regulatory evolution.
Project description:Mechanism, inheritance patterns and biological significance remain unclear. Here, we generated genome-wide integrated maps of H3K27me3 modification and transcriptome for Col, C24 and their F1 hybrid, and their clf mutants. We found that H3K27me3 modification profiles were divergent between Col and C24, and were inherited mainly additively in hybrid. By comparing H3K27me3 modification ratio between parents to allelic H3K27me3 modification ratio in hybrid, we identified cis- and trans-regulatory divergence for H3K27me3 modification variation between Col and C24, and found that cis-regulatory divergence was the predominant contributor to H3K27me3 variation. The majority of genes with both cis- and trans-regulatory divergence displayed "cis-trans" interaction, whereas "cis+trans" interaction resulted in higher magnitude of H3K27me3 variation. H3K27me3 modification variation was negatively correlated with gene expression variation between Col and C24, both of which might rise from the same cis-regulatory divergence. Moreover, cis-regulatory divergence could lead to the concurrent allelic H3K27me3 modification bias and allelic gene expression bias for auxin metabolic genes and stimulus responsive genes in Col×C24 hybrid. Natural variation of H3K27me3 modification and gene expression were changed upon CLF mutation, and heterosis, especially best-parent hetereosis, was largely compromised in clf hybrid. Together, our study provided a comprehensive analysis of regulatory divergence for natural variation of histone modification and its association with differential gene expression between Arabidopsis accessions and growth vigor in hybrid.
Project description:Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and by trans activating factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we investigate the global patterns of gene expression evolution in Saccharomyces cerivisiae. We report statistical methods useful in quantifying cis and trans regulation using next generation sequencing data. Using these methods, measured genome-wide allele-specific expression by deep sequencing to investigate the genetic architecture of gene regulatory variation between two strains of Saccharomyces cerevisiae. We find that expression polymorphism in yeast is common for both cis and trans regulation, though trans variation is more common. Our detailed analyses of the effects of functional constraint on expression variation as indicated by measures such as protein connectivity, gene essentiality, and the ratio of nonsynonymous substitutions to synonymous substitutions clearly reveal that both classes of variation are under purifying selection, but trans variation is more sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our intraspecific variation suggests that natural selection strongly influences the patterns of variation we observe. Further analyses revealed that cis divergence is more frequently mediated by positive Darwinian selection than trans divergence, which is compatible with neutral evolution. Study the gene expression patterns in two strains of yeast (BY and RM)