Project description:Purpose: The goal of our study is to compare two different ecotypes of Oryza sativa L., PHS-susceptible rice trait and PHS-resistant rice trait under three different maturation stages in rice seed embryo with profile of miRNA-seq. Methods: Oryza sativa. L miRNA profiles of two different ecotypes with 3 different maturation stages of rice seed embryo were generated by NGS, in duplicate, following Illumina NGS workflow. Results: We found the differentially expressed microRNAs between PHS-susceptible rice trait and PHS-resistant rice trait according to the three different seed maturation stages. Target transcripts of differentially expressed microRNAs have been predicted via psRNATarget web server, and a part of those target genes are likely to be regulated by microRNAs, affecting overall responses to heat stress and the regulation of seed dormancy during maturation. Conclusions: Our study represents the analysis of rice seed small RNAs, specifically microRNAs, under two different ecotypes, three different seed maturation stages in rice seed embryo. Our results show that microRNAs are involved in response to heat stress and the regulation of seed dormancy. This study will provide a foundation for understanding dynamics of seed dormancy during the seed development and overcoming pre-harvest sprouting.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:The small RNAs presented here were produced as a preliminary exploration of small RNAs in rice, and as such, various tissues and stress conditions were sampled. Small RNAs present in these samples were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682. The datasets contain Oryza sativa var Nipponbar endogenous small RNA sequences in the size range 18 to 34 nt. Plants were grown in a Conviron Environmental Chamber at high light intensity using both high pressure sodium and metal halide lamps for 10.5 hr at 28 degrees C and for 13.5 hr at 26 degrees C in the dark. RNA was extracted from rice tissues at various stages of development and under different abiotic and biotic stresses. The small RNAs presented here were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682.
Project description:Cross-kingdom molecular exchange between hosts and interacting microbes is essential for the survival of both plants and their pathogens. Recent studies showed plants transfer their small RNAs (sRNAs) and massager RNAs (mRNAs) into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogen cells remains unknown. Here, we show that rice plants send defense proteins into the fungal pathogen Rhizoctonia solani via extracellular vesicles (EVs). These vesicles enrich host defense proteins and are taken up by the fungal cells. Reducing EV-mediated host protein transfer leads to increased disease susceptibility. Thus, plants send defense proteins via EVs into fungal pathogens to combat infection, providing a mechanism of protein exchange between plants and pathogens that helps reduce crop disease.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. Totally three sets of small RNAs, which were obtained under normal condition as well as salt and drought stress conditions
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development.
Project description:Here, we reported the first quantitative acetylomic case in plants with a special focus on the rice early seed development. The results obtained from this work not only aimed to provide an overall view of the acetylation events, but also explored the regulatory roles of PKA during early seed development in rice.
Project description:In this study, we employed a special size fractionation and cDNA library construction method followed by 454 deep sequencing to systematically profile rice intermediate-size ncRNAs. Our analysis resulted in the identification of 1349 ncRNAs in total, including 754 novel ncRNAs of an unknown functional category. Chromosome distribution of all identified ncRNAs showed no strand bias, and displayed a pattern similar to that observed in protein-coding genes with few chromosome dependencies. More than half of the ncRNAs were centered around the plus-strand of the 5’ and 3’ termini of the coding regions. The majority of the novel ncRNAs were rice specific, while 78% of the small nucleolar RNAs (snoRNAs) were conserved. Tandem duplication drove the expansion of over half of the snoRNA gene families. Furthermore, 90% of the snoRNA candidates were shown to produce small RNAs between 20-30 nt, 80% of which were associated with ARGONAUT proteins generally, and AGO1b in particular. Overall, our findings provide a comprehensive view of an intermediate-size non-coding transcriptome in a monocot species, which will serve as a useful platform for an in-depth analysis of ncRNA functions.