Project description:Purpose: We aimed to dissect transcriptomic responses of Tulipa gesneriana during petal senescence and characterize function of senescence related genes. Methods: A total amount of 3 µg RNA was used for generation of sequencing libraries using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations and index codes were added to attribute sequences to each sample. After cluster generation, the library preparations were sequenced on an Illumina Hiseq platform and 125 bp/150 bp paired-end reads were generated. Clean reads were obtained by removing low quality reads, reads containing adapter and ploy-N from raw data. At the same time, Q20, Q30 and GC content the clean data were calculated. Index of the Arabidopsis genome was built using Bowtie v2.2.3 and paired-end clean reads were aligned to the reference genome using TopHat v2.0.12. HTSeq v0.6.1 was used to count the reads numbers mapped to each gene. And then FPKM (Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced) of each gene was calculated based on the length of the gene and reads count mapped to this gene. Differential expression analysis between each two different stages was performed using the DESeq R package (1.18.0). Results:In total, 15 samples with three biological replicates per stage combination were used for RNA sequencing analysis. At least 6 G clean bases were generated for each sample. Comparative analysis identified genes involved in flower development and/or fllower senescence.
Project description:Tulip, being an important ornamental plant, generally requires lengthy and laborious procedures to develop new varieties using traditional breeding methods requires. But ionizing radiation potentially accelerates the breeding process of ornamental plant species. The biological effects of γ-ray irradiation on tulip, therefore, were investigated through establishing an irradiation-mediated mutation breeding protocol to accelerate its breeding process. ISSR-PCR molecular marker technique was further used to identify the mutants of phenotypic variation plants. This study showed that low irradiation doses (5 Gy) stimulated bulb germination to improve the survival rate of tulip, while high irradiation doses (20 to 100 Gy) significantly (P < 0.05) inhibited its seed germination and growth, and decreased the flowering rate, petal number, flower stem length and flower diameter. More than 40 Gy significantly (P < 0.05) decreased the total chlorophyll content and increased the malondialdehyde (MDA) content in tulips. Interestingly, three types of both stigma variations and flower pattern variations, and four types of flower colour variations were observed. With increasing the irradiation dose from 5 to 100 Gy, the anthocyanin and flavonoid contents continuously decreased. Scanning electron microscopy (SEM) analysis evidenced that high irradiation doses altered the micromorphology of leaf stomata. Microscopic observations of tulip root apical mitosis further showed the abnormal chromosomal division behaviour occurring at different mitotic phases under irradiation treatment (80 Gy). Increasing the irradiation dose from 20 to 100 Gy enhanced the micronucleus rate. Moreover, the suspected genetic variation in tulips was evaluated by inter-simple sequence repeat (ISSR) analysis, and the percentage of polymorphic bands was 68%. Finally, this study concludes that that 80 Gy may be an appropriate radiation does to better enhance the efficiency of mutagenic breeds in tulip plants. Using γ-ray irradiation, therefore, is expected to offer a theoretical basis for mutation breeding in tulips.
Project description:In this study, the presence of tulip virus X (TVX) in Korean tulips was confirmed through high-throughput RNA sequencing. Its complete genome sequence of 6,056 nucleotides was determined via Sanger sequencing, exhibiting a 99.24% nucleotide identity with TVX-J isolate. This signifies a previously unreported presence of TVX outside Japan.