Project description:Within a spike of wheat, the central spikelets usually generate three to four fertile florets, while the basal spikelets hardly achieve this. The physiological and transcriptional mechanism behind the difference in fertility between the basal and central spikelets is unclear. This study reports a high temporal-resolution investigation of transcriptomes, number and morphology of floret primordia, and physiological traits. The W6.5–W7.5 stage was regarded as the boundary to distinguish between fertile and abortive floret primordia; those floret primordia reaching the W6.5–W7.5 stage during the differentiation phase (3–9 d after terminal spikelet stage) usually developed into fertile florets in the next, dimorphism phase (12–27 d after terminal spikelet stage), whereas the others aborted. The central spikelets had a greater number of fertile florets than the basal spikelets, which was associated with more floret primordia reaching the W6.5–W7.5 stage. Physiological and transcriptional results demonstrated that the central spikelets had a higher sucrose content and lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than the basal spikelets due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we propose a model in which ABA and JA accumulation is induced under limiting sucrose availability (basal spikelet) through up-regulating genes involved in ABA and JA synthesis; this leads to floret primordia in the basal spikelets being hardly able to reach their fertile potential (W6.5–W7.5 stage) during the differentiation phase and then aborting. This fertility repression module may also regulate spikelet fertility in other cereal crops and potentially provides genetic resources to improve spikelet fertility.
Project description:Natural variation in the barley homolog of CENTRORADIALIS (HvCEN), was found to contribute to the expansion of barley cultivation into diverse habitats. It has been shown that induced hvcen mutants, originally designated as praematurum-c/maturity-c (mat-c) mutants, flowered a few days earlier under natural long-day conditions. All hvcen mutants flowered early and showed a reduction in spikelet number per spike, tiller number and yield in the outdoor experiments. Further evaluating development of main shoot apex of hvcen mutants and wild type under controlled long day and short day conditions showed that mutations in hvcen accelerated spikelet initiation and reduced axillary bud number in a photoperiod independent manner, but promoted floret development only under long days. In this project we investigate the pleiotropic effects of HvCEN on developmental timing and shoot and spike morphologies of barley and dependence on these effects on photoperiod. This RNAseq dataset was generated to identify the putative transcriptional targets of HvCEN. To this end, we used global transcriptome profiling in developing shoot apices and inflorescences of two allelic hvcen mutants (mat-c.907 and mat-c.943) and wild-type (Bonus) plants grown under long- and short-day photoperiods.
Project description:In rice (Oryza sativa L.), the number of panicles, spikelets per panicle and grain weight are important components of grain yield. These characteristics are controlled by quantitative trait loci (QTLs) and are derived from variation inherent in crops.The identification of different yield related QTLs facilitates an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. In the present study, We cloned and characterized a large-panicle QTL, and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an average of 37.62% increase in total grain yield per plant. trait loci (QTLs) and are derived from variation inherent in crops.
Project description:The biological functions of circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits are poorly understood. Here, we characterize the core clock gene CCA1 homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns which are positively regulated by rhythmic histone modifications (H3K4me3, H3K9ac and H3k36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing (DAP-seq) indicates that TaCCA1 preferentially binds to sequences similar to “evening elements” (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photo synthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.
Project description:In rice (Oryza sativa L.), the number of panicles, spikelets per panicle and grain weight are important components of grain yield. These characteristics are controlled by quantitative trait loci (QTLs) and are derived from variation inherent in crops.The identification of different yield related QTLs facilitates an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. In the present study, We cloned and characterized a large-panicle QTL, and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an average of 37.62% increase in total grain yield per plant. trait loci (QTLs) and are derived from variation inherent in crops. OsEBS-transgenic rice B10201 and B10301 and control Guichao2
Project description:Determine the copy number per cell of the TNF-RSC members in A549 cells using targeted proteomics (PRM) combined with spike-in of known amounts of reference peptides.