Project description:Freshwater environments such as rivers receive effluent discharges from wastewater treatment plants, representing a potential hotspot for antibiotic resistance genes (ARGs). These effluents also contain low levels of different antimicrobials including biocides and antibiotics such as sulfonamides that can be frequently detected in rivers. The impact of such exposure on ARG prevalence and microbial diversity of riverine environment is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration (<4 g L-1) of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a microflume system. This system was a semi-natural in-vitro microflume using river water (30 L) and sediment, with circulation to mimic river flow. A combination of ‘omics’ approaches were conducted to study the impact of SMX exposure on the microbiomes within the microflumes. Metaproteomics did not show differences in ARGs expression with SMX exposure in water.
Project description:Compared to freshwater ecosystems, the health status of estuarine waters remains little studied despite their importance for many species. They also represent a zone of interest for Human settlements that make them the final sink of pollution in both the water column and sediment. Once in sediments, pollutants could represent a threat to benthic as well as pelagic estuarine species through resuspension events. In the Seine estuary, the copepod Eurytemora affinis has been previously presented as a relevant species to assess resuspended sediment contamination through the use of fitness-related effects at the individual level. The aim of the present study was to use E. affinis copepods to assess estuarine sediment-derived elutriates toxicity using both a molecular (i.e. transcriptomics) and a behavioral approach. Two sites along the Seine estuary were sampled. They were both under anthropic pressures from the industrial-port activities or wastewater treatment plants (i.e. Tancarville) or agricultural pressure from freshwater affluent (i.e. Fatouville). The analysis of sediments used to prepare elutriates reveals that both sites have close contamination profiles. The transcriptomic analysis reveals that exposure to both sites triggers the dysregulation of genes involved in biological function as defense response, immunity, ecdysone pathway or neurotoxicity. This analysis also reveals a higher count of dysregulated genes in the Fatouville site compared to the Tancarville despite their close contamination profile. These results emphasize the sensitivity of this molecular approach to assess environmental matrix toxicity with E. affinis. The analysis of the swimming behavior of E. affinis did not highlight significant effects after both sites elutriate exposure. However, our strategy to assess E. affinis swimming behavior (i.e the combination of the DanioVision observation chamber and the EthoVision analysis software) allows the discrimination of basal swimming behavior in this species. Thus, it represents a promising standardized tool to assess copepods swimming behavior in ecotoxicological studies.
Project description:Global climate change increasingly polarizes environments, presenting unprecedented challenges to many organisms (Smol, 2012). Polarization occurs not only in the spatial dimension, producing greater desert drought and tropical rainfall, for example, but also in the temporal dimension by making a local environment more variable over time. Many organisms survive these fluctuating environmental conditions by manifesting multiple distinct phenotypes through developmental processes that enable phenotypic plasticity (Pigliucci et al., 2006; Parsons et al., 2011). As with early development, these processes are expected to strictly regulate gene expression to canalize phenotype, despite the genetic diversity within populations (Alberch, 1982; Riska, 1986, Pigliucci et al., 1996). For plasticity to evolve, natural selection must act on genes that regulate trait variation, e.g, those conferring norms of reaction to a specific set of conditions. Despite the importance of these reaction norms for coping with environmental challenges, the genetic framework underlying phenotypic plasticity remains poorly defined, making it impossible to study how they function, differ among natural populations, and evolve. Here we used arsenic, a chemical inhibitor of salinity acclimation, to identify genes involved in transforming the gill from its freshwater to its seawater architecture in the euryhaline teleost Fundulus heteroclitus. Linear model interaction terms associated with the combined effect of arsenic and salinity challenge revealed an antagonistic relationship between arsenic exposure and salinity acclimation Exposure to arsenic during salinity acclimation yielded gene expression values similar to those observed in unexposed fish that remained in a stable environment, demonstrating that arsenic prevents changes in gene expression that normally enable osmotic plasticity. The gene sets defined by the interaction terms showed reduced inter-individual variation, suggesting unusually tight control, consistent with the hypothesis that they participate in a canalized developmental response. Evidence that natural selection acts to preserve their canalized gene expression was obtained by referencing three populations that differ in their adaptive tolerance to salinity changes (Whitehead et al., 2011). Specifically, populations adapted to withstand the widest salinity range showed both reduced transcriptional variation in genes enabling gill plasticity and an increased osmoregulatory capacity, highlighted by more stable plasma chloride concentrations in response to an osmotic challenge. Finally, we observed significantly fewer associations between genes underlying trait variation and their transcriptional regulators compared to genes that responded to only arsenic or salinity. Collectively, our results demonstrate that phenotypic plasticity converges on a molecular solution that parallels early development, in which the expression of phenotypic plasticity genes and phenotypes are canalized in part by reducing trans-regulatory complexity. 36 Sample comparisons with fish gills exposed to freshwater, freshwater to seawater for 1 hour, freshwater to seawater for 1 hour with arsenic, freshwater to seawater for 24 hours, freshwater to seawater for 24 hours with arsenic, and freshwater with arsenic for 48 hours
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment.
Project description:The salinity gradient separating marine and freshwater environments is a major ecological divide, and the mechanisms by which most organisms adapt to new salinity environments are poorly understood. Diatoms are a lineage of ancestrally marine microalgae that have repeatedly colonized and diversified in freshwaters. Cyclotella cryptica is a euryhaline diatom that naturally tolerates a broad range of salinities, thus providing a powerful system for understanding the genomic mechanisms for mitigating and acclimating to low salinity. To understand how diatoms mitigate acute hypoosmotic stress, we abruptly shifted C. cryptica from seawater to freshwater and performed transcriptional profiling at 8 time points across 10 hours. We found substantial remodeling of the transcriptome, with over half of the genome differentially expressed in at least one time point. The peak response occurred within 1 hour, with strong repression of genes involved in functions related to cell growth and osmolyte production, and strong induction of genes implicated in stress defense such as scavenging reactive oxygen species and maintaining osmotic balance. Notably, transcripts largely returned to baseline levels within 4–10 hours, with growth resuming shortly thereafter, suggesting that gene expression dynamics may be useful for predicting acclimation. Moreover, comparison to a study of expression profiling following months-long acclimation of C. cryptica to freshwater revealed little overlap between the genes and processes differentially expressed in cells exposed to acute stress versus fully acclimated conditions. Altogether, this study highlights the power of time-resolved transcriptomics to reveal fundamental insights into how cells dynamically respond to an acute environmental shift and provides new insights into how diatoms mitigate natural salinity fluctuations and have successfully diversified across freshwater habitats worldwide.
Project description:Primary outcome(s): Aspiration volume by continuous aspiration catheter and mass of sediment extracted from endoscopically collected intestinal fluid over time.