Project description:Transcriptional profiling of Bifidobacterium longum mutant versus wt strain in exponentional phase Keywords: Characterization of natural mutant
Project description:Transcriptional profiling of Bifidobacterium longum mutant versus wt strain in exponentional phase Keywords: Characterization of natural mutant One B. longum mutant (HPR2) was analysed versus the wt strain NCC2705 in: exponential phase 37°,pH 6.0, MRS, headspace flushing with CO2. Three biological replicates.
Project description:Transcriptional profiling of Bifidobacterium longum mutants versus wt strain in exponentional phase, with or without heat-shock treatment, and in stationary phase Keywords: Characterization of natural mutants
Project description:Transcriptional profiling of Bifidobacterium longum mutants versus wt strain in exponentional phase, with or without heat-shock treatment, and in stationary phase Keywords: Characterization of natural mutants Two B. longum mutants (NCC2912 and NCC2913) were analysed versus the wt strain NCC2705 in three conditions : exponential phase 37°, exponential phase with 7 min 50° heat shock, stationary phase. Two biologic replicates and 2 technical replicates
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. longum SC596 to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:Bifidobacterium longum subsp. infantis is a bacterial commensal that colonizes the breast-fed infant gut where it utilizes indigestible components delivered in human milk. Accordingly, human milk contains several non-protein nitrogenous molecules, including urea at high abundance. This project investigates the degree to which urea is utilized as a primary nitrogen source by Bifidobacterium longum subsp. infantis and incorporation of hydrolysis products into the expressed proteome.
Project description:To study the differentiation of Bifidobacterium longum-specific T cells, we stimulated neonatal or naive adult T cells with B. longum-pulsed monocytes and compared them to resting cells from the same donor.
Project description:Diet-microbe interactions play a crucial role in infant development and modulation of the early-life microbiota. The genus Bifidobacterium dominates the breast-fed infant gut, with strains of B. longum subsp. longum (B. longum) and B. longum subsp. infantis (B. infantis) particularly prevalent within the early-life microbiota. Although, transition from milk to a more diversified diet later in infancy initiates a shift to a more complex microbiome, with concurrent reductions in Bifidobacterium abundance, specific strains of B. longum may persist in individual hosts for prolonged periods of time. Here, we sought to investigate the adaptation of B. longum to the changing infant diet during the early-life developmental window. Genomic characterisation of 75 strains isolated from nine either exclusively breast- or formula-fed infants in the first 18 months of their lives revealed subspecies- and strain-specific intra-individual genomic diversity with respect to glycosyl hydrolase families and enzymes, which corresponded to different dietary stages. Complementary phenotypic growth studies indicated strain-specific differences in human milk oligosaccharide and plant carbohydrate utilisation profiles between and within individual infants, while proteomic profiling identified proteins involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum subspecies/strain genomic and carbohydrate utilisation diversity, which aligns with a changing nutritional environment i.e. moving from breast milk to a solid food diet. These data provide additional insights into possible mechanisms responsible for the competitive advantage of this bifidobacterial species and their long-term persistence in a single host and may contribute to rational development of new dietary therapies for this important development window.