Project description:Full thickness articular cartilage lesions with penetration into the subchondral bone fill with fibrocartilage-like repair tissue. However, the repair tissue has compromised structural and biomechanical properties relative to normal articular cartilage. The objective of this study was to evaluate transcriptome differences between normal articular cartilage and repair tissue. Bilateral one-cm2 full-thickness lesions were made in the articular surface of the distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from each stifle were collected. Total RNA was isolated from tissue samples, linearly amplified, and applied to a 9367-probeset equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design. Comparisons were validated by histological analysis and quantitative real-time polymerase chain reaction (qPCR). Statistical analysis revealed 3,327 (35.2%) differentially expressed probesets. Biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by qPCR. The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of transcripts from genes which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to the chondrogenic phenotype of normal articular chondrocytes.
Project description:Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs.
Project description:Previous studies have demonstrated relative deficiencies of repair tissue within articular lesions when compared to articular cartilage. While cells occupying the lesions might be of mesenchymal origin, they do not recapitulate differentiation to the chondrogenic phenotype of normal articular chondrocytes. Nevertheless, attributes of repair tissue appear similar to chondrocytes and their precursors at various other different states. We hypothesized that analyses of gene expression profiles for these other cell phenotypes would elucidate the identity of repair tissue cells. Total RNA was isolated from repair tissue samples, neonatal articular cartilage, primary articular chondrocytes maintained in monolayer culture and passaged weekly over 28 days, and bone marrow stromal cells expanded to 80% confluence in monolayer culture. Total RNA was linearly amplified and applied to a 9413-probe set equine-specific cDNA microarray. Four repair tissue samples were compared with a dye-swap experimental design to four samples from each of the three other cell populations for a total of twelve comparisons, or twenty-four slides. Differential expression of genes of interest was validated by real-time quantitative polymerase chain reaction. Statistical analysis revealed that a total of 934 (9.9%), 1839 (19.5%), and 940 (10.0%) probe sets were differentially expressed for the bone marrow stromal cells versus repair tissue, de-differentiated chondrocytes versus repair tissue, and neonatal articular chondrocytes versus repair tissue comparisons, respectively. Transcriptional and translational machinery gene ontological categories were over-represented in transcripts demonstrating stable expression amongst the three comparisons. Biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue comprised much of the genes with the greatest levels of differential expression amongst the three comparisons. Overall, the profiles indicated that repair cells were more chondrogenic than bone marrow stromal cells and de-differentiated chondrocytes. However, transcript levels of key biomarkers and growth factors for repair tissue cells four months post-operatively fell far short of those of neonatal articular chondrocytes destined to undergo normal cartilage maturation.
Project description:Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injury to the articular surface is a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.