Project description:In order to identify genes regulated by VE-cadherin expression, we compared a mouse VE-cadherin null cell line (VEC null) with the same line reconstituted with VE-cadherin wild type cDNA (VEC positive). The morphological and functional properties of these cell lines were described previously [Lampugnani,M.G. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793-804 (2003)]. By Affymetrix gene expression analysis we found several genes up-regulated by VE-cadherin, among which claudin-5 reached remarkably high levels. The up-regulation of these genes required not only VE-cadherin expression but also cell confluence suggesting that VE-cadherin clustering at junctions was needed.
Project description:In order to identify genes regulated by VE-cadherin expression, we compared a mouse VE-cadherin null cell line (VEC null) with the same line reconstituted with VE-cadherin wild type cDNA (VEC positive). The morphological and functional properties of these cell lines were described previously [Lampugnani,M.G. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793-804 (2003)]. By Affymetrix gene expression analysis we found several genes up-regulated by VE-cadherin, among which claudin-5 reached remarkably high levels. The up-regulation of these genes required not only VE-cadherin expression but also cell confluence suggesting that VE-cadherin clustering at junctions was needed. Experiment Overall Design: VEC null or positive cells in the sparse and confluent conditions have been starved in MCDB 131 medium 1% BSA for 36 h. Next, RNA has been extracted with standard guanidinium isothiocyanate lysis buffer and cesium chloride ultracentrifugation. Synthesis of biotinylated cRNA targets, array hybridization (GeneChips MG_U74Av2 and MG_U74Bv2), staining and scanning were performed according to the Affymetrix standard protocols, starting from 15 μg of total RNA. Two copies of the GeneChips were hybridized with each cRNA sample. The MAS5 algorithm was used to determine the expression levels of mRNAs; the absolute analysis was performed using default parameters and scaling factor 500. Report files were extracted for each chip, and performance of labeled target was evaluated on the basis of several values (scaling factor, background and noise values, % present calls, average signal value, etc). Gene expression levels were normalized on the median over all samples. Annotation of Probe Sets is according to Affymetrix Annotation Tables (release May 31, 2007) [Vecchi,M. et al. Gene expression analysis of early and advanced gastric cancers. Oncogene 26, 4284-4294 (2007)]. We selected the genes up-regulated by VE-cadherin expression and clustering at junctions in confluent VEC positive cells.
Project description:Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumours, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular inter-endothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, vascular endothelial (VE)-cadherin (VEC), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, Vascular Endothelial-Protein Tyrosine Phosphatase (VE-PTP) and von Willebrand factor (vWf). Mechanistically VEC exerts this effect by inhibiting Polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 and β-catenin, which contribute to Polycomb repressive complex-2 (PRC2) binding to promoter regions of claudin-5, VE-PTP and vWf. VE-cadherin/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VE-cadherin association increases Ezh2 recruitment to claudin-5, VE-PTP and vWf promoters, causing gene downregulation. RNAseq comparison of VEC-null and VEC-positive cells suggested a more general role of VE-cadherin in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of Claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of Polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the Polycomb-mediated repression system. Keywords: Polycomb, endothelial cells, VE-cadherin, vessel maturation, vascular biology, vascular permeability, cell signalling, epigenetics, gene regulation. Downloaded from http://circres.ahajour Conclusions: These data extend the knowledge of Polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the Polycomb-mediated repression system
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:The shear stress-regulated lncRNA LASSIE interacts with junctional proteins (e.g. PECAM-1, which interacts with VE-cadherin) and influences endothelial barrier function. Here we characterize the remodeling of the VE-Cadherin complex by the lncRNA LASSIE. LASSIE silenced HUVECs were subjected to co-immunoprecipitation using an anti-VE-cadherin antibody. Differentially associated proteins were identified by Mass spectrometry. This analysis revealed a significantly decreased association of cytoskeleton-linked proteins with VE-cadherin after silencing of LASSIE. Functional assays confirmed this result and characterized LASSIE as a stabilizer of junctional complexes in endothelial cells, important for normal shear stress sensing and barrier function.
Project description:Expression data from three endothelial cell lines derived from murine embryonic stem cells expressing VE-cadherin, N-cadherin or both
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Vascular endothelial protein tyrosine phosphatase (VE-PTP, PTPRB) is a receptor type phosphatase that is crucial for the regulation of endothelial junctions and blood vessel development. VE-PTP regulates vascular integrity by dephosphorylating substrates which are key players in endothelial junction stability, such as the angiopoietin receptor TIE2, the endothelial adherens junction protein VE-cadherin and the vascular endothelial growth factor receptor VEGFR2. Here, we have systematically searched for novel substrates of VE-PTP in endothelial cells by utilizing two approaches. First, we studied changes in the endothelial phosphoproteome upon exposing cells to a highly VE-PTP-specific phosphatase inhibitor followed by affinity isolation and mass-spectrometric analysis of phosphorylated proteins by phosphotyrosine-specific antibodies. Second, we used a substrate trapping mutant of VE-PTP to pull down phosphorylated substrates in combination with SILAC-based quantitative mass spectrometry measurements. We identified a set of substrate candidates of VE-PTP, of which a remarkably large fraction is related to cell junctions (48/165; 29.1%). Several of those were found in both screens and displayed very high connectivity in predicted functional interaction networks. The receptor protein tyrosine kinase EPHB4 was the most prominently phosphorylated protein upon VE-PTP inhibition among those VE-PTP targets that were identified by both proteomic approaches. Further analysis revealed that EPHB4 forms a ternary complex with VE-PTP and TIE2 in endothelial cells. VE-PTP controls the phosphorylation of each of these two tyrosine kinase receptors. Despite of their simultaneous presence in a ternary complex, stimulating each of the receptors with their own specific ligand did not cross-activate the respective partner receptor. Our systematic approach has led to the identification of novel substrates of VE-PTP, of which many are relevant for the control of cellular junctions further promoting the importance of VE-PTP as a key player of junctional signalling.
Project description:The aim of the experiment was to compare a newly defined population VE-Cadherin+GFP+ to control populations, VE-Cadherin- GFP+ and VE-Cadherin+GFP-.